【译】Cascade R-CNN:Delving into High Quality Object Detection论文翻译

CascadeR-CNN是一种用于目标检测的多阶段结构,通过一系列随着IOU临界值增加而训练的检测器来提高检测质量。它解决了由于正样本数量减少导致的过拟合问题,并在推理过程中实现了假设和检测器质量的匹配。实验证明,该方法能够显著提升不同检测器的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR 2018年论文:Cascade R-CNN

论文地址:https://arxiv.org/abs/1712.00726

----------------------------------------------------------------------------------------------------

博主也是正在看这篇论文,实时翻译上传。

看完后会有总结文章。

-----------------------------------------------------------------------------------------------------

级联R-CNN:深入高品质目标检测

摘要

在目标检测中,IOU临界值用来定义正样本和负样本。一个目标检测器,由低的IOU临界值比如0.5来训练,经常会产生noisy检测结果。然而,随着增加IOU临界值,检测的效果就会下降。主要是有与两个因素:

1) 训练过程中的overfitting,由于正样本的指数消失

2) 检测器最优的IoU与输入假设的IoU之间的inference-timemismatch。

一个多阶段的目标检测结构,级联R-CNN被提出来解决这些问题。它由一系列随着IOU临界值增加而训练的检测器构成,从而对close false positives更具有选择性。检测器逐阶段训练,利用检测器的输出是一个好的分布来训练下一个更好品质的检测器。对逐渐改进的假设进行重采样来保证所有的检测器由一组同等大小的正样本,从而来减少过拟合问题。在inference应用同样的级联程序,使得每一个阶段的假设和检测器质量有一个更近的匹配。级联R-CNN的一个简单实现超过了在COCO数据集挑战上的所有single-model目标检测器。实验也展示了级联R-CNN能广泛应用于不同的检测其结构,获得与基础检测器强度无关的一致增益。

简介




### Cascade R-CNN 和 Hierarchical Task Cascade (HTC) #### Cascade R-CNN Cascade R-CNN 是一种用于目标检测的改进方法,通过级联多个阶段来逐步提高边界框预测的质量。每个阶段都由一个二分类器组成,负责区分前景和背景以及调整候选区域的位置。这种设计使得模型能够更精确地定位物体并减少误检率[^1]。 ```python class CascadeRCNN(nn.Module): def __init__(self, num_stages=3): super(CascadeRCNN, self).__init__() self.num_stages = num_stages # 定义每一阶段的特征提取网络和其他组件... def forward(self, x): proposals = initial_proposals(x) for stage in range(self.num_stages): refined_bboxes = refine_bounding_boxes(proposals, stage) proposals = select_high_quality_proposals(refined_bboxes) return final_predictions ``` #### Hierarchical Task Cascade (HTC) HTC 扩展了 Cascade R-CNN 的概念,在单个框架内联合处理多种视觉任务,如实例分割、人体姿态估计等。该架构采用分层的方式依次完成不同子任务的学习过程,并利用共享卷积特征图加速计算效率。具体来说,HTC 将整个流程分为几个连续的任务模块,每个模块专注于特定类型的输出生成工作[^2]。 ```python class HTCDetector(nn.Module): def __init__(self): super(HTCDetector, self).__init__() # 初始化各层次任务处理器... def forward(self, input_image): shared_features = extract_shared_convolutional_features(input_image) detection_results = [] segmentation_masks = [] keypoints_estimations = [] current_input = shared_features for task_module in self.task_modules: outputs = task_module(current_input) update_current_state(outputs) store_intermediate_outputs(detection_results, segmentation_masks, keypoints_estimations) combine_all_tasks_output() return combined_result ``` 在论文方面,《Cascade R-CNN: Delving into High Quality Object Detection》深入探讨了如何构建高效的目标检测系统;而《Libra R-CNN: Towards Balanced Learning for Object Detection》则介绍了平衡学习策略的应用案例。对于 HTC,《Hierarchical Relation Network for Instance Segmentation》提供了详细的理论基础和技术实现说明[^3]。 关于代码资源,MMDetection 库是一个很好的开源项目,它实现了上述两种算法以及其他先进的计算机视觉技术。可以从 GitHub 上获取最新版本的源码进行研究和开发测试[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值