MiniTab的拟合回归模型的系列参数设置

本文围绕拟合回归模型展开,介绍了指定模型项、分层模型的方法,如添加交互项、幂项等。还阐述了选择拟合选项,包括权重、置信水平等,以及执行逐步回归的多种方法,如前进法、向后消元法等,同时说明了验证方法、显示图形和结果的相关设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为拟合回归模型指定模型项

统计 > 回归 > 回归 > 拟合回归模型 > 模型

可以向模型添加交互作用项多项式项。默认情况下,模型仅包含在主对话框中输入的预测变量的主效应。添加项的方法有很多。假设预测变量列表具有 3 个连续变量 X、Y、Z 和 2 个类别变量 A、B。

使用选定预测变量和模型项添加项

要向模型添加项,请选择至少一个预测变量或项。要选择多个项或取消选择一个项,请在单击预测变量或项的同时,按 Ctrl 键。在添加交互作用项和更高阶项时,预测变量的多重共线性会增加。

变量顺序添加交互项

通过指定的顺序添加所有交互作用项。假设按阶数 3 选择预测变量 X、Y、A 和添加交互作用项。单击添加后,Minitab 会添加 X*Y、X*A、Y*A、X*Y*A。

 上述设置进行模型回归之后,回归方程参考如下图:

阶数添加全部交互项

用于建模弯曲。此选项通过指定的顺序添加幂和交互作用项。幂用于连续预测变量。假设通过顺序 3 选择了 X、Y、A 和多个项。单击添加后,Minitab 会添加 X 和 Y 的幂项:X*X、Y*Y、X*X*X、Y*Y*Y。Minitab 还会添加预测变量和幂的交互作用项:X*Y、X*A、Y*A、X*X*Y、X*Y*Y、X*X*A、X*Y*A、Y*Y*A。

模型中的交叉预测变量和项

此选项可通过以下方式使用:

  • 可以交叉两个或更多预测变量。假设选择了 X、Y、Z。单击添加时,Minitab 会添加以下项:X*X、X*Y、X*Z。
  • 可以将已存在于模型中的项进行交叉。假设 X*A 和 X*B 已经存在于模型中。如果仅选择这些项并单击添加,则 Minitab 会添加 X*X*A*B。
  • 可以在模型中将预测变量与项相交叉。假设 X*X 和 Y*Y 已存在于模型中。如果选择了这些项和预测变量 A、B,然后单击添加,Minitab 会添加 X*X*A、X*X*B、Y*Y*A、Y*Y*B。每个预测变量都与每个模型项交叉,但是预测变量不与它们本身交叉,模型项也不与它们本身交叉。

注意:可能需要取消选择预测变量或项,这样就会只选择希望交叉的项。要取消选择项,请在单击预测变量或项的同时,按 Ctrl 键。

模型中的项

当向模型添加项时,这些项会列在对话框的空白处。可以选择单独的项或多组项进行删除或重新排序等操作。

包含模型中的常数项

选择以便子回归模型中包含常量项。在大多数情况下,应当在模型中包含常量

删除常量可能是因为在预测变量值等于 0 时假设响应变量为 0。例如,如果存在可以根据食物的脂肪、蛋白质及碳水化合物含量预测卡路里的模型。当脂肪、蛋白质和碳水化合物为 0 时,卡路里含量也将为 0(或非常接近于 0)。

比较不包括常量的模型时,请使用 S 而不是 R2 统计量来评估模型的拟合值。

为拟合回归模型指定分层模型

统计 > 回归 > 回归 > 拟合回归模型 > 模型

用于允许 Minitab 向模型添加显示的项以便创建分层模型。在分层模型中,组成高阶项的所有低阶项也将在模型中显示。例如,包含交互作用项 A*B*C 的模型要作为分层结构,必须同时包括 A、B、C、A*B、A*C 和 B*C 项。

模型可能是非分层的。通常,如果低阶项不显著,可以将其删除。包含过多项的模型可能相对来说不太精确,会降低预测新观测值的能力。

请考虑以下技巧:

  • 首先拟合分层模型。可稍后再删除不显著的项。
  • 如果对预测变量进行标准化,请拟合分层模型以便生成未编码(或自然)单位的方程。
  • 如果模型包含类别变量,在类别项至少分层的情况下,结果会更易于解释。

指定 Minitab 是否向模型添加项。

  • 添加用于生成模型层次结构的项 (推荐):Minitab 将添加显示的项以便生成分层模型。
  • 使用指定的非层次结构模型:Minitab 不会添加项。

此后使用此选项

选择此选项可使的选项成为默认选项。后续将跳过此对话框。如果要查看此选项,可以在文件 > 选项 > 线性模型 > 模型层次结构中更改设置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红狐九尾

你的鼓励是我持续创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值