近三年降噪论文整理

这篇博客整理了近年来在图像和视频降噪领域的深度学习方法,包括Unprocessing Images for Learned Raw Denoising、CBDnet、DIDN等论文,并提供了相应的代码链接和项目主页,覆盖从单帧到多帧、从图像到视频的降噪技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、近两年图像降噪比较好的论文

论文主要是面向真实噪声图像去噪,raw 或 sRGB,方法单帧、多帧。会持续更新,也会写一些论文的阅读分析和复现。

1、Unprocessing Images for Learned Raw Denoising(CVPR2019)

论文链接:https://arxiv.org/abs/1811.11127

项目链接:http://timothybrooks.com/tech/unprocessing/

 

2、Toward Convolutional Blind Denoising of Real Photographs (CBDnet)

论文链接:https://arxiv.org/abs/1807.04686

代码链接:https://github.com/GuoShi28/CBDNet

 

3、Deep Iterative Down-Up CNN for Image Denoising (DIDN)

论文链接:

### 关于音频降噪技术的研究 音频降噪是一个广泛研究的领域,其目标是从带有背景噪声的语音信号中提取清晰的语音[^2]。这一过程对于提升语音的质量和可懂度至关重要,尤其是在复杂的环境条件下。目前,音频降噪的主要方法可以分为传统信号处理技术和基于深度学习的方法。 #### 1. **传统的音频降噪方法** 传统的音频降噪技术主要依赖于统计模型、滤波器设计以及频谱分析等工具。例如,WebRTC 中使用的 Noise Suppression (NS) 模块通过时域处理实现了较为有效的降噪功能[^1]。这种方法通常利用短时傅里叶变换(STFT)来估计语音和噪声的功率谱密度,并采用维纳滤波或其他类似的优化策略来进行频谱重建。此外,还有基于子空间投影的时域语音降噪方法,它能够有效区分语音分量和噪声分量并加以分离。 另一种常见的传统方法是麦克风阵列的自适应降噪算法。这类方法通过对多个传感器采集到的数据进行联合处理,从而增强目标方向上的声音而抑制其他方向的干扰源[^3]。这种技术特别适用于多通道录音设备,比如智能手机或会议系统中的麦克风阵列。 #### 2. **基于深度学习的音频降噪** 近年来,随着神经网络的发展,越来越多的研究转向了数据驱动型解决方案。相比传统方法,深度学习模型可以从大规模标注好的训练集中学到更复杂的声音特征表示形式,因此往往能取得更好的性能表现[^2]。典型的架构包括全连接神经网络(FCNNs),循环神经网络(RNNs), 卷积神经网络(CNNs)及其组合体——即所谓的序列建模框架。 具体来说,一种流行的端到端训练范式叫做Mask Estimation Network(MENet),其中输入的是含噪语音片段经过STFT转换得到的幅度谱矩阵;输出则是对应的理想二值掩码(IBMs)或者软掩码(SMs)[^2]。之后再借助逆向快速傅立叶变换(iFFT)重构纯净版的人声样本。 以下是简单的 Python 示例代码展示如何加载预训练模型执行基本操作: ```python import torch from model import DCCRN # 假设我们有一个名为DCCRN的类定义好了 def denoise_audio(input_signal_path, output_clean_path): device = 'cuda' if torch.cuda.is_available() else 'cpu' net = DCCRN().to(device) checkpoint = torch.load('pretrained_model.pth', map_location=device) net.load_state_dict(checkpoint['model']) noisy_waveform, sr = torchaudio.load(input_signal_path) with torch.no_grad(): clean_estimated = net(noisy_waveform.to(device)) torchaudio.save(output_clean_path, clean_estimated.cpu(), sample_rate=sr) denoise_audio('./noisy.wav', './cleaned_output.wav') ``` 此脚本调用了 `torchaudio` 库读取文件并通过 GPU 加速完成推理计算最后保存结果至指定路径下。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值