直观理解积分-从零开始:机器学习的数学原理和算法实践

本书旨在帮助初学者理解机器学习中的数学原理,从微积分、线性代数和概率统计的基础入手,通过直观解释和实例,引导读者深入学习机器学习算法。书中强调了导数、矩阵、向量、概率和统计等概念,通过编程实践加深理解,适合数学基础薄弱的读者和相关专业学生入门。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

<从零开始:机器学习的数学原理和算法实践>
编辑推荐
  1.形象直白阐述机器学习算法原理2.细致讲解关键数学原理3.代码分段解读,帮助读者上手实操4.编程实践案例经典实用
内容简介
  零基础读者应如何快速入门机器学习?数学基础薄弱的读者应如何理解机器学习中的数学原理?这些正是本书要解决的问题。本书从数学基础知识入手,通过前3章的介绍,帮助读者轻松复习机器学习涉及的数学知识;然后,通过第4-第13章的介绍,逐步讲解机器学习常见算法的相关知识,帮助读者快速入门机器学习;最后,通过第14章的综合实践,帮助读者回顾本书内容,进一步巩固所学知识。《机器学习的数学原理和算法实践》适合对机器学习感兴趣但数学基础比较薄弱的读者学习,也适合作为相关专业的学生入门机器学习的参考用书。
作者简介
  大威,本名张威,西安交通大学工科试验班(工管贯通班)硕士毕业,信息系统项目管理师(高级资质)、高级经济师、中国计算机学会会员、中国通信学会会员。拥有多年数据建模、数据挖掘与商业咨询经验,现就职于某行业领先的大数据公司,负责大数据产品及人工智能产品的规划设计管理工作。
目录
封面
版权信息
版 权
内 容 提 要
前 言
第1章 补基础:不怕学不懂微积分
1.1 深入理解导数的本质
1.1.1 哲学层面理解变化
1.1.2 生活中处处有函数
1.1.3 从瞬时速度到导数
1.1.4 从近似运动来理解导数
1.1.5 直观理解复合函数求导
1.2 理解多元函数偏导
1.2.1 多元函数偏导数是什么
1.2.2 搞清楚梯度是什么
1.3 理解微积分
1.3.1 直观理解积分
1.3.2 直观理解微积分基本定理
1.4 泰勒公式太重要了
1.4.1 泰勒公式是什么
1.4.2 泰勒公式的典型应用
1.4.3 直观理解泰勒公式的来龙去脉
1.4.4 微积分基本定理与泰勒公式的关系
第2章 补基础:不怕学不懂线性代数
2.1 直观理解向量
2.1.1 理解向量加法与数乘
2.1.2 理解向量乘法的本质
2.

### 关于从零开始实现机器学习算法 从零开始实现机器学习算法是一种非常有效的学习方式,它能够帮助理解底层的数学原理以及算法的工作机制[^1]。这种实践不仅加深了对理论的理解,还提高了编程技能调试能力[^2]。 以下是几个常见的机器学习算法及其对应的数学基础与实现方法: #### 1. 线性回归 (Linear Regression) 线性回归是最基本的监督学习模型之一,其目标是找到最佳拟合数据点的直线方程 \( y = wx + b \),其中 \( w \) 是权重,\( b \) 是偏置项。通过最小化均方误差(MSE),可以推导出梯度下降法来更新参数。 ```python import numpy as np def gradient_descent(x, y, learning_rate=0.01, iterations=1000): m_curr = b_curr = 0 n = len(x) for i in range(iterations): y_predicted = m_curr * x + b_curr cost = (1/n) * sum([val**2 for val in (y-y_predicted)]) md = -(2/n)*sum(x*(y-y_predicted)) bd = -(2/n)*sum(y-y_predicted) m_curr -= learning_rate * md b_curr -= learning_rate * bd return m_curr, b_curr, cost # Example usage x = np.array([1, 2, 3, 4]) y = np.array([2, 4, 6, 8]) m, b, c = gradient_descent(x, y) print(f"Slope: {m}, Intercept: {b}, Cost: {c}") ``` 此代码展示了如何手动计算梯度并调整参数以优化线性回归模型。 --- #### 2. K-Means 聚类 (K-Means Clustering) K-Means 是一种无监督学习算法,用于将未标记的数据分组到不同的簇中。该算法基于欧几里得距离反复迭代直到收敛。 ```python from sklearn.datasets import make_blobs import matplotlib.pyplot as plt import random def k_means(data, k=3, max_iterations=100): centroids = data[random.sample(range(len(data)), k)] for _ in range(max_iterations): clusters = [[] for _ in range(k)] # Assign each point to nearest centroid for pt in data: distances = [np.linalg.norm(pt - center) for center in centroids] cluster_idx = np.argmin(distances) clusters[cluster_idx].append(pt) new_centroids = [] for cluster in clusters: if not cluster: continue new_centroid = np.mean(cluster, axis=0) new_centroids.append(new_centroid) if np.allclose(centroids, new_centroids): break centroids = new_centroids return centroids, clusters data, labels = make_blobs(n_samples=300, centers=3, cluster_std=0.7) centers, groups = k_means(data) plt.scatter(data[:, 0], data[:, 1], alpha=0.5) for center in centers: plt.scatter(center[0], center[1], color='red', marker='x') plt.show() ``` 上述代码实现了简单的 K-Means 聚类过程,并可视化了聚类结果。 --- #### 3. 支持向量机 (Support Vector Machine, SVM) SVM 的核心思想是在高维空间中找到一个超平面,使得不同类别之间的间隔最大化。可以通过二次规划求解最优分离边界。 由于 SVM 实现较为复杂,这里仅提供伪代码框架作为参考: ```python class SimpleSVM: def __init__(self, learning_rate=0.001, lambda_param=0.01, epochs=1000): self.lr = learning_rate self.lambda_param = lambda_param self.epochs = epochs self.w = None self.b = None def fit(self, X, y): samples, features = X.shape y_ = np.where(y <= 0, -1, 1) self.w = np.zeros(features) self.b = 0 for epoch in range(self.epochs): for idx, xi in enumerate(X): condition = y_[idx] * (np.dot(xi, self.w) - self.b) >= 1 if condition: self.w -= self.lr * (2 * self.lambda_param * self.w) else: self.w -= self.lr * ( 2 * self.lambda_param * self.w - np.dot(xi, y_[idx])) self.b -= self.lr * y_[idx] def predict(self, X): linear_output = np.dot(X, self.w) - self.b return np.sign(linear_output) ``` 这段代码定义了一个简化版的支持向量机分类器。 --- ### 总结 以上提供了三种经典机器学习算法的手动实现示例,涵盖了有监督无监督的学习场景。这些例子有助于深入理解背后的数学逻辑技术细节。同时,在实际开发过程中,良好的错误处理文档记录也是不可或缺的一部分。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值