医疗场景的数字化转型正加速推进,大前端作为连接患者与医疗服务的核心入口,与AI技术的融合已成为突破医疗资源瓶颈的关键路径。本文将从开发者视角,聚焦远程诊断中的医学图像识别、健康监测中的生理数据解析两大核心场景,通过代码实例拆解技术实现难点,并提供符合HIPAA/FDA规范的落地方案。
一、远程诊断:医学图像识别的前端工程化实践
医学图像识别是AI辅助诊断的核心载体,但前端面临"模型体积大、设备兼容性差、实时性要求高"三大挑战。以下是基于TensorFlow.js的轻量化实现方案:
1.1 肺部CT结节检测的前端部署
模型轻量化处理
原始ResNet50模型体积达98MB,无法在移动端高效运行。通过模型剪枝+量化压缩至8MB:
// 模型压缩脚本(Python预处理)
import tensorflow as tf
from tensorflow_model_optimization.sparsity import keras