基本推荐模型

本文介绍了推荐系统中的NCF模型,强调了Wide & Deep Model在用户与应用匹配度中的作用,其中Wide部分负责记忆,Deep部分负责泛化。候选生成阶段采用层次softmax和负样本采样技术。在排名阶段,目标函数关注的是watch_minutes_per_impression,而非点击率,以减少click-bait问题。此外,还提到了DMF模型以及特征子集搜索策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NCF
1 means item i is relevant to u, and 0 otherwise
在这里插入图片描述
目标函数:用户和app的匹配程度
Wide & Deep Model – ranking model (Google Play,基于用户query,推荐合适的item)
memorization(记忆):wide(LR),线性模型 + 交叉特征(AND)
generalization(泛化):deep(DNN),几乎不需要人工特征工程
ex.
query = “fried chicken”, ->(0,0)
item = “chicken fried rice” -> (0, 1)

word1 word2 wordX word 4

wordX -> word1 word2 word4
在这里插入图片描述
Candidate Generation – 超大规模分类问题(类似skip-gram,采用方法:hierarchical softmax 和 negative sample)
youtube把召回阶段建模为一个分类模型,其目标是根据上下文C,用户U,从集合V中找到时刻t最可能被观看的视频Wt
u代表用户和conte

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自由技艺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值