OPENCV study

OPENCV study

1.读取图像

cv::imread() 读取任意路径的图像,int flags = IMREAD_COLOR 读入图片到Mat容器当中的存放方式

Enumerator
IMREAD_UNCHANGED Python: cv::IMREAD_UNCHANGED = -1,如果已设置,则按原样返回加载的图像(使用alpha通道,否则将被裁剪)。忽略EXIF方向。
IMREAD_GRAYSCALE Python: cv::IMREAD_GRAYSCALE = 0,如果已设置,则始终将图像转换为单通道灰度图像(编解码器内部转换)。
IMREAD_COLOR Python: cv::IMREAD_COLOR = 1,如果已设置,请始终将图像转换为3通道BGR彩色图像。
IMREAD_ANYDEPTH Python: cv::IMREAD_ANYDEPTH = 2,如果设置,则在输入具有相应深度时返回16位/32位图像,否则将其转换为8位。
IMREAD_ANYCOLOR Python: cv::IMREAD_ANYCOLOR = 4,如果设置,则以任何可能的颜色格式读取图像。
IMREAD_LOAD_GDAL Python: cv::IMREAD_LOAD_GDAL = 8,如果已设置,请使用gdal驱动程序加载图像。
IMREAD_REDUCED_GRAYSCALE_2 Python: cv::IMREAD_REDUCED_GRAYSCALE_2 = 16,如果设置,则始终将图像转换为单通道灰度图像,并且图像大小减小1/2。
IMREAD_REDUCED_COLOR_2 Python: cv::IMREAD_REDUCED_COLOR_2 = 17,如果设置,请始终将图像转换为3通道BGR彩色图像,并且图像大小减小1/2。
IMREAD_REDUCED_GRAYSCALE_4 Python: cv::IMREAD_REDUCED_GRAYSCALE_4 = 32,如果设置,则始终将图像转换为单通道灰度图像,并且图像大小减小1/4。
IMREAD_REDUCED_COLOR_4 Python: cv::IMREAD_REDUCED_COLOR_4 = 33,如果设置,请始终将图像转换为3通道BGR彩色图像,并且图像大小减小1/4。
IMREAD_REDUCED_GRAYSCALE_8 Python: cv::IMREAD_REDUCED_GRAYSCALE_8 = 64,如果设置,请始终将图像转换为单通道灰度图像,并且图像大小减小1/8。
IMREAD_REDUCED_COLOR_8 Python: cv::IMREAD_REDUCED_COLOR_8 = 65,如果设置,请始终将图像转换为3通道BGR彩色图像,并且图像大小减小1/8。
IMREAD_IGNORE_ORIENTATION Python: cv::IMREAD_IGNORE_ORIENTATION = 128如果已设置,请不要根据EXIF的方向标志旋转图像。

namedWindow() 定义一个显示窗口名 (WINDOW_AUTOSIZE) 显示图像

灰度处理:

cvtColor( cv::image; cv::iamge)

void cv::cvtColor	(	InputArray 	src,
                         OutputArray 	dst,
                       int 	code,
                      int 	dstCn = 0 
                      )	

参数详解:

src:源图像(输入的 8-bit , 16-bit 或 32-bit 单倍精度浮点数影像)

dst:目标图像(输入的 8-bit , 16-bit 或 32-bit 单倍精度浮点数影像)

code:

RGB <--> BGR:CV_BGR2BGRA、CV_RGB2BGRA、CV_BGRA2RGBA、CV_BGR2BGRA、CV_BGRA2BGR

RGB <--> 5X5:CV_BGR5652RGBA、CV_BGR2RGB555、(以此类推,不一一列举)

RGB <---> Gray:CV_RGB2GRAY、CV_GRAY2RGB、CV_RGBA2GRAY、CV_GRAY2RGBA

RGB <--> CIE XYZ:CV_BGR2XYZ、CV_RGB2XYZ、CV_XYZ2BGR、CV_XYZ2RGB

RGB <--> YCrCb(YUV) JPEG:CV_RGB2YCrCb、CV_RGB2YCrCb、CV_YCrCb2BGR、CV_YCrCb2RGB、CV_RGB2YUV(将YCrCb用YUV替代都可以)

RGB <--> HSV:CV_BGR2HSV、CV_RGB2HSV、CV_HSV2BGR、CV_HSV2RGB

RGB <--> HLS:CV_BGR2HLS、CV_RGB2HLS、CV_HLS2BGR、CV_HLS2RGB

RGB <--> CIE L*a*b*:CV_BGR2Lab、CV_RGB2Lab、CV_Lab2BGR、CV_Lab2RGB

RGB <--> CIE L*u*v:CV_BGR2Luv、CV_RGB2Luv、CV_Luv2BGR、CV_Luv2RGB

RGB <--> Bayer:CV_BayerBG2BGR、CV_BayerGB2BGR、CV_BayerRG2BGR、CV_BayerGR2BGR、CV_BayerBG2RGB、CV_BayerGB2RGB、 CV_BayerRG2RGB、CV_BayerGR2RGB(在CCD和CMOS上常用的Bayer模式)

YUV420 <--> RGB:CV_YUV420sp2BGR、CV_YUV420sp2RGB、CV_YUV420i2BGR、CV_YUV420i2RGB

OPENCV默认图片通道顺序是BGR,而不是RGB。

opencv cvtcolor支持的空间转发code,如下

cv::ColorConversionCodes { 
  cv::COLOR_BGR2BGRA = 0, 
  cv::COLOR_RGB2RGBA = COLOR_BGR2BGRA, 
  cv::COLOR_BGRA2BGR = 1, 
  cv::COLOR_RGBA2RGB = COLOR_BGRA2BGR, 
  cv::COLOR_BGR2RGBA = 2, 
  cv::COLOR_RGB2BGRA = COLOR_BGR2RGBA, 
  cv::COLOR_RGBA2BGR = 3, 
  cv::COLOR_BGRA2RGB = COLOR_RGBA2BGR, 
  cv::COLOR_BGR2RGB = 4, 
  cv::COLOR_RGB2BGR = COLOR_BGR2RGB, 
  cv::COLOR_BGRA2RGBA = 5, 
  cv::COLOR_RGBA2BGRA = COLOR_BGRA2RGBA, 
  cv::COLOR_BGR2GRAY = 6, 
  cv::COLOR_RGB2GRAY = 7, 
  cv::COLOR_GRAY2BGR = 8, 
  cv::COLOR_GRAY2RGB = COLOR_GRAY2BGR, 
  cv::COLOR_GRAY2BGRA = 9, 
  cv::COLOR_GRAY2RGBA = COLOR_GRAY2BGRA, 
  cv::COLOR_BGRA2GRAY = 10, 
  cv::COLOR_RGBA2GRAY = 11, 
  cv::COLOR_BGR2BGR565 = 12, 
  cv::COLOR_RGB2BGR565 = 13, 
  cv::COLOR_BGR5652BGR = 14, 
  cv::COLOR_BGR5652RGB = 15, 
  cv::COLOR_BGRA2BGR565 = 16, 
  cv::COLOR_RGBA2BGR565 = 17, 
  cv::COLOR_BGR5652BGRA = 18, 
  cv::COLOR_BGR5652RGBA = 19, 
  cv::COLOR_GRAY2BGR565 = 20, 
  cv::COLOR_BGR5652GRAY = 21, 
  cv::COLOR_BGR2BGR555 = 22, 
  cv::COLOR_RGB2BGR555 = 23, 
  cv::COLOR_BGR5552BGR = 24, 
  cv::COLOR_BGR5552RGB = 25, 
  cv::COLOR_BGRA2BGR555 = 26, 
  cv::COLOR_RGBA2BGR555 = 27, 
  cv::COLOR_BGR5552BGRA = 28, 
  cv::COLOR_BGR5552RGBA = 29, 
  cv::COLOR_GRAY2BGR555 = 30, 
  cv::COLOR_BGR5552GRAY = 31, 
  cv::COLOR_BGR2XYZ = 32, 
  cv::COLOR_RGB2XYZ = 33, 
  cv::COLOR_XYZ2BGR = 34, 
  cv::COLOR_XYZ2RGB = 35, 
  cv::COLOR_BGR2YCrCb = 36, 
  cv::COLOR_RGB2YCrCb = 37, 
  cv::COLOR_YCrCb2BGR = 38, 
  cv::COLOR_YCrCb2RGB = 39, 
  cv::COLOR_BGR2HSV = 40, 
  cv::COLOR_RGB2HSV = 41, 
  cv::COLOR_BGR2Lab = 44, 
  cv::COLOR_RGB2Lab = 45, 
  cv::COLOR_BGR2Luv = 50, 
  cv::COLOR_RGB2Luv = 51, 
  cv::COLOR_BGR2HLS = 52, 
  cv::COLOR_RGB2HLS = 53, 
  cv::COLOR_HSV2BGR = 54, 
  cv::COLOR_HSV2RGB = 55, 
  cv::COLOR_Lab2BGR = 56, 
  cv::COLOR_Lab2RGB = 57, 
  cv::COLOR_Luv2BGR = 58, 
  cv::COLOR_Luv2RGB = 59, 
  cv::COLOR_HLS2BGR = 60, 
  cv::COLOR_HLS2RGB = 61, 
  cv::COLOR_BGR2HSV_FULL = 66, 
  cv::COLOR_RGB2HSV_FULL = 67, 
  cv::COLOR_BGR2HLS_FULL = 68, 
  cv::COLOR_RGB2HLS_FULL = 69, 
  cv::COLOR_HSV2BGR_FULL = 70, 
  cv::COLOR_HSV2RGB_FULL = 71, 
  cv::COLOR_HLS2BGR_FULL = 72, 
  cv::COLOR_HLS2RGB_FULL = 73, 
  cv::COLOR_LBGR2Lab = 74, 
  cv::COLOR_LRGB2Lab = 75, 
  cv::COLOR_LBGR2Luv = 76, 
  cv::COLOR_LRGB2Luv = 77, 
  cv::COLOR_Lab2LBGR = 78, 
  cv::COLOR_Lab2LRGB = 79, 
  cv::COLOR_Luv2LBGR = 80, 
  cv::COLOR_Luv2LRGB = 81, 
  cv::COLOR_BGR2YUV = 82, 
  cv::COLOR_RGB2YUV = 83, 
  cv::COLOR_YUV2BGR = 84, 
  cv::COLOR_YUV2RGB = 85, 
  cv::COLOR_YUV2RGB_NV12 = 90, 
  cv::COLOR_YUV2BGR_NV12 = 91, 
  cv::COLOR_YUV2RGB_NV21 = 92, 
  cv::COLOR_YUV2BGR_NV21 = 93, 
  cv::COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, 
  cv::COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, 
  cv::COLOR_YUV2RGBA_NV12 = 94, 
  cv::COLOR_YUV2BGRA_NV12 = 95, 
  cv::COLOR_YUV2RGBA_NV21 = 96, 
  cv::COLOR_YUV2BGRA_NV21 = 97, 
  cv::COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, 
  cv::COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, 
  cv::COLOR_YUV2RGB_YV12 = 98, 
  cv::COLOR_YUV2BGR_YV12 = 99, 
  cv::COLOR_YUV2RGB_IYUV = 100, 
  cv::COLOR_YUV2BGR_IYUV = 101, 
  cv::COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, 
  cv::COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, 
  cv::COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, 
  cv::COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, 
  cv::COLOR_YUV2RGBA_YV12 = 102, 
  cv::COLOR_YUV2BGRA_YV12 = 103, 
  cv::COLOR_YUV2RGBA_IYUV = 104, 
  cv::COLOR_YUV2BGRA_IYUV = 105, 
  cv::COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, 
  cv::COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, 
  cv::COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, 
  cv::COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, 
  cv::COLOR_YUV2GRAY_420 = 106, 
  cv::COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, 
  cv::COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, 
  cv::COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, 
  cv::COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, 
  cv::COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, 
  cv::COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, 
  cv::COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, 
  cv::COLOR_YUV2RGB_UYVY = 107, 
  cv::COLOR_YUV2BGR_UYVY = 108, 
  cv::COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, 
  cv::COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, 
  cv::COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, 
  cv::COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, 
  cv::COLOR_YUV2RGBA_UYVY = 111, 
  cv::COLOR_YUV2BGRA_UYVY = 112, 
  cv::COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, 
  cv::COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, 
  cv::COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, 
  cv::COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, 
  cv::COLOR_YUV2RGB_YUY2 = 115, 
  cv::COLOR_YUV2BGR_YUY2 = 116, 
  cv::COLOR_YUV2RGB_YVYU = 117, 
  cv::COLOR_YUV2BGR_YVYU = 118, 
  cv::COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, 
  cv::COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, 
  cv::COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, 
  cv::COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, 
  cv::COLOR_YUV2RGBA_YUY2 = 119, 
  cv::COLOR_YUV2BGRA_YUY2 = 120, 
  cv::COLOR_YUV2RGBA_YVYU = 121, 
  cv::COLOR_YUV2BGRA_YVYU = 122, 
  cv::COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, 
  cv::COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, 
  cv::COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, 
  cv::COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, 
  cv::COLOR_YUV2GRAY_UYVY = 123, 
  cv::COLOR_YUV2GRAY_YUY2 = 124, 
  cv::COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, 
  cv::COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, 
  cv::COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, 
  cv::COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, 
  cv::COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, 
  cv::COLOR_RGBA2mRGBA = 125, 
  cv::COLOR_mRGBA2RGBA = 126, 
  cv::COLOR_RGB2YUV_I420 = 127, 
  cv::COLOR_BGR2YUV_I420 = 128, 
  cv::COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, 
  cv::COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, 
  cv::COLOR_RGBA2YUV_I420 = 129, 
  cv::COLOR_BGRA2YUV_I420 = 130, 
  cv::COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, 
  cv::COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, 
  cv::COLOR_RGB2YUV_YV12 = 131, 
  cv::COLOR_BGR2YUV_YV12 = 132, 
  cv::COLOR_RGBA2YUV_YV12 = 133, 
  cv::COLOR_BGRA2YUV_YV12 = 134, 
  cv::COLOR_BayerBG2BGR = 46, 
  cv::COLOR_BayerGB2BGR = 47, 
  cv::COLOR_BayerRG2BGR = 48, 
  cv::COLOR_BayerGR2BGR = 49, 
  cv::COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, 
  cv::COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, 
  cv::COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, 
  cv::COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, 
  cv::COLOR_BayerBG2GRAY = 86, 
  cv::COLOR_BayerGB2GRAY = 87, 
  cv::COLOR_BayerRG2GRAY = 88, 
  cv::COLOR_BayerGR2GRAY = 89, 
  cv::COLOR_BayerBG2BGR_VNG = 62, 
  cv::COLOR_BayerGB2BGR_VNG = 63, 
  cv::COLOR_BayerRG2BGR_VNG = 64, 
  cv::COLOR_BayerGR2BGR_VNG = 65, 
  cv::COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, 
  cv::COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, 
  cv::COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, 
  cv::COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, 
  cv::COLOR_BayerBG2BGR_EA = 135, 
  cv::COLOR_BayerGB2BGR_EA = 136, 
  cv::COLOR_BayerRG2BGR_EA = 137, 
  cv::COLOR_BayerGR2BGR_EA = 138, 
  cv::COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, 
  cv::COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, 
  cv::COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, 
  cv::COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, 
  cv::COLOR_BayerBG2BGRA = 139, 
  cv::COLOR_BayerGB2BGRA = 140, 
  cv::COLOR_BayerRG2BGRA = 141, 
  cv::COLOR_BayerGR2BGRA = 142, 
  cv::COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, 
  cv::COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, 
  cv::COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, 
  cv::COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, 
  cv::COLOR_COLORCVT_MAX = 143 
}

split() 通道分离

OpenCV中通过split()函数来实现,该函数用于将一个多通道数组分离成几个单通道数组,其函数原型如下:

void cv::split(
	const cv::Mat& mtx, //输入图像
	vector<Mat>& mv // 输出的多通道序列(n个单通道序列)
);
  • 参数1:需要分离的通道数组
  • 参数2:输出数组或输出的vector容器

$$
mvc=src(I)
c

$$

merge()图像多个通道的合并

通道合并在OpenCV中通过merge()函数实现,是split()函数的逆操作,即把多个数组合并成一个多通道数组,其函数原型如下:

void merge(
	const vector<cv::Mat>& mv, // 输入的多通道序列(n个单通道序列)
	cv::OutputArray dst // 输出图像,包含mv
);
  • 参数1:被合并的输入矩阵或vector容器阵列,所有矩阵必须有统一的尺寸和深度
  • 参数2:输入矩阵的个数,此参数必须大于1
  • 参数3:输出矩阵,通道数量为矩阵阵列中通道的总数

二值化处理:

全局二值化处理 threshold()

全局二值化方法 threshold 方法,主要是通过遍历灰度图中点,将图像信息二值化,处理过后的图片只有二种色值。主要介绍全局二值化。

cvThreshold( const CvArr*  src, CvArr*  dst,
                   double  threshold, double  max_value,
                            int threshold_type );

1、参数详解

第一个参数,源图像,InputArray类型的src,输入数组,填单通道 , 8或32位浮点类型的Mat即可。
第二个参数,OutputArray类型的dst,函数调用后的运算结果存在这里,即这个参数用于存放输出结果,且和第一个参数中的Mat变量有一样的尺寸和类型。
第三个参数,double类型的thresh,阈值的具体值。
第四个参数,double类型的maxval,当第五个参数阈值类型type取 THRESH_BINARY 或THRESH_BINARY_INV阈值类型时的最大值.
第五个参数,int类型的type,阈值类型,。
其它参数很好理解,我们来看看第五个参数,第五参数有以下几种类型
0: THRESH_BINARY 当前点值大于阈值时,取Maxval,也就是第四个参数,下面再不说明,否则设置为0
1: THRESH_BINARY_INV 当前点值大于阈值时,设置为0,否则设置为Maxval
2: THRESH_TRUNC 当前点值大于阈值时,设置为阈值,否则不改变
3: THRESH_TOZERO 当前点值大于阈值时,不改变,否则设置为0
4: THRESH_TOZERO_INV 当前点值大于阈值时,设置为0,否则不改变

 cv::morphologyEx	(	InputArray 	src,
OutputArray 	dst,
int 	op,
InputArray 	kernel,
Point 	anchor = Point(-1,-1),
int 	iterations = 1,
int 	borderType = BORDER_CONSTANT,
const Scalar & 	borderValue = morphologyDefaultBorderValue() 
)	

参数详解

InputArray src,源图像,InputArray类型的src,输入数组,填单通道 , 8或32位浮点类型的Mat即可。
OutputArray dst,OutputArray类型的dst,函数调用后的运算结果存在这里,即这个参数用于存放输出结果,且和第一个参数中的Mat变量有一样的尺寸和类型。

int op,操作的类型,通过源码我们得知总共有以下几种类型:

enum MorphTypes{
    MORPH_ERODE    = 0, //腐蚀
    MORPH_DILATE   = 1, //膨胀
    MORPH_OPEN     = 2, //开操作
    MORPH_CLOSE    = 3, //闭操作
    MORPH_GRADIENT = 4, //梯度操作
    MORPH_TOPHAT   = 5, //顶帽操作
    MORPH_BLACKHAT = 6, //黑帽操作
    MORPH_HITMISS  = 7  
};

InputArray kernel,用于膨胀操作的结构元素,如果取值为Mat(),那么默认使用一个3 x 3 的方形结构元素,可以使用**getStructuringElement()**来创建结构元素

Point anchor = Point(-1,-1),参考点,其默认值为(-1,-1)说明位于kernel的中心位置。

int iterations = 1, 迭代使用 dilate() 的次数,默认值为 1。

int borderType = BORDER_CONSTANT, 边缘类型,默认为BORDER_CONSTANT。

const Scalar & borderValue ,边缘值,用它的默认值即可。

calcHist()计算图像直方图

void calcHist(const Mat* images,
              int nimages,
              const int* channels,
              InputArray mask,
              OutputArray hist,
              int dims,
              const int* histSize,
              const float** ranges,
              bool uniform=true,
              bool accumulate=false )

参数详解:

const Mat* images:输入图像,输入数组,填单通道 , 8或32位浮点类型的Mat即可。

int nimages:输入图像的个数

const int* channels:需要统计直方图的第几通道

InputArray mask:掩膜,计算掩膜内的直方图 …Mat(),mask必须是一个8位(CV_8U)的数组并且和images的数组大小相同

OutputArray hist:输出的直方图数组

int dims:需要统计直方图通道的个数

const int* histSize:指的是直方图分成多少个区间,就是 bin的个数

const float** ranges: 统计像素值得区间

bool uniform=true::是否对得到的直方图数组进行归一化处理

bool accumulate=false:在多个图像时,是否累计计算像素值得个数

Grabcut抠图

void cv::grabCut(	InputArray 	img,
		InputOutputArray 	mask,
		Rect 	rect,
		InputOutputArray 	bgdModel,
		InputOutputArray 	fgdModel,
		int 	iterCount,
		int 	mode = GC_EVAL 
)	

参数详解:

src: 源图像,InputArray类型的src,输入数组,填单通道 , 8或32位浮点类型的Mat即可。

mask:输入/输出8位单通道掩码。当mode设置为[GC_INIT_WITH_RECT][https://docs.opencv.org/4.5.0/d7/d1b/group__imgproc__misc.html#ggaf8b5832ba85e59fc7a98a2afd034e558a5f8853c1e5a89c4aa2687d1f78a7e550]

*(函数使用提供的矩形初始化状态和掩码。之后,它运行该算法的iterCount迭代。)*时,该掩码由函数初始化。它的元素可能有一个[GrabCutClass][https://docs.opencv.org/4.5.0/d7/d1b/group__imgproc__misc.html#gad43d3e4208d3cf025d8304156b02ba38]。

rect:包含分割对象的ROI。ROI之外的像素被标记为“明显背景”。该参数仅在mode==GC_INIT_WITH_RECT时使用。

bgdModel:背景模型的临时数组。在处理同一图像时,请勿对其进行修改。

That's great! OpenCV (Open Source Computer Vision) is a powerful computer vision library that you can use to analyze and manipulate images and videos. Here are some steps you can follow to get started with studying OpenCV in Python: 1. Install OpenCV: You can install OpenCV in Python using pip. Open your terminal and type `pip install opencv-python` to install it. 2. Learn the basics of Python: Before you start working with OpenCV, you should have a basic understanding of Python programming. You can start with learning Python syntax, data types, control structures, functions, and classes. 3. Learn the basics of computer vision: Computer vision is a broad field that covers a wide range of topics, including image processing, object detection, face recognition, and machine learning. You can start by learning the basics of image processing, such as image filtering, thresholding, and edge detection. 4. Read the OpenCV documentation: The OpenCV documentation is an excellent resource for learning how to use the library. You can find tutorials, examples, and documentation on the OpenCV website. 5. Practice coding: The best way to learn OpenCV is to practice coding. Start with simple image processing tasks, such as reading and displaying images, and then move on to more advanced tasks like object detection and tracking. 6. Join OpenCV communities: Joining OpenCV communities can help you learn from other developers and get answers to your questions. You can join the OpenCV forum, Stack Overflow, and other online communities. With these steps, you can start your journey to becoming an OpenCV expert in Python. Good luck!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值