前向传播(Forward Propagation)
什么是前向传播?
前向传播是指数据从神经网络的输入层经过隐藏层传递到输出层的过程。在这个过程中,输入数据通过每一层的加权求和和激活函数处理,最终得到输出结果。前向传播是神经网络进行预测的关键步骤。
前向传播的步骤
我们以一个简单的三层神经网络为例,解释前向传播的过程:
- 输入层:将原始数据输入到神经网络中。
- 隐藏层:对输入数据进行加权求和并应用激活函数。
- 输出层:对隐藏层的输出再次进行加权求和并应用激活函数,得到最终的预测结果。
数学表示
假设我们有一个三层神经网络,其中:
- ( X ) 是输入数据
- ( W_1 ) 和 ( W_2 ) 分别是从输入层到隐藏层、从隐藏层到输出层的权重矩阵
- ( b_1 ) 和 ( b_2 ) 分别是隐藏层和输出层的偏置
- ( Z_1 ) 和 ( Z_2 ) 分别是隐藏层和输出层的线性组合
- ( A_1 ) 和 ( A_2 ) 分别是隐藏层和输出层的激活值
前向传播的过程可以表示为:
-
计算隐藏层的线性组合:
-
应用激活函数: