前向传播(Forward Propagation)

前向传播(Forward Propagation)

什么是前向传播?

前向传播是指数据从神经网络的输入层经过隐藏层传递到输出层的过程。在这个过程中,输入数据通过每一层的加权求和和激活函数处理,最终得到输出结果。前向传播是神经网络进行预测的关键步骤。

前向传播的步骤

我们以一个简单的三层神经网络为例,解释前向传播的过程:

  1. 输入层:将原始数据输入到神经网络中。
  2. 隐藏层:对输入数据进行加权求和并应用激活函数。
  3. 输出层:对隐藏层的输出再次进行加权求和并应用激活函数,得到最终的预测结果。

数学表示

假设我们有一个三层神经网络,其中:

  • ( X ) 是输入数据
  • ( W_1 ) 和 ( W_2 ) 分别是从输入层到隐藏层、从隐藏层到输出层的权重矩阵
  • ( b_1 ) 和 ( b_2 ) 分别是隐藏层和输出层的偏置
  • ( Z_1 ) 和 ( Z_2 ) 分别是隐藏层和输出层的线性组合
  • ( A_1 ) 和 ( A_2 ) 分别是隐藏层和输出层的激活值

前向传播的过程可以表示为:

  1. 计算隐藏层的线性组合
    在这里插入图片描述

  2. 应用激活函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值