基本概念:
图像的平滑除了在空间域中进行外,也可以在频率域中进行。频域的滤波分主要分为低通和高通滤波器.
在频域上低频部分表示轮廓,高频部分表示细节.因此可以使用低通和高通滤波分本别对图像进行平滑和锐化处理.
1.在频率上滤波的基本步骤分为:
- 对图像进行扩充,填0,并将图像中心化.
对离散图像进行离散傅里叶变换,图像在频域上将呈现周期无限扩展.空域上的离散函数对应频域上的周期函数.针对显示和滤波,在区间上显示一个完整的周期会更加方便,因此需要将频率左移1/2周期.而时域的相移对应频移的平移.因此在时域上x乘上虚指e−j2πux/M.扩展到二维平面上,即x,y分别成上e−j2πu0x/M,e−j2πv0x/M .其中(u0,v0) = (M/2, N/2).根据欧拉公式,将指数转化为三角函数,可得下列公式:
- 对图像进行DFT变换,得到F(u,v).需要注意的是,必须添加虚部.
- 生成一个实的,对称的滤波函数H(u,v).滤波器大小和扩充后的图像大小保持一致.并且中心在图像中心.并阵列相乘,进行滤波.
- 对图像进行IDFT反变换.
- 去中心化.再次乘上−1(x+y).
- 截取图像.
低通滤波器
1.理想低通滤波器
其中,D0为截至频率,D(u,v)为频域中一点(u,v)到频域矩形中心点的距离.
由于理想滤波器只存在于理论中,矩形波的傅立叶反变换为sinc函数.sinc函数在时域上是无限延伸的.因此将产生振铃现象.
2.布特沃斯低通滤波器
布特沃斯滤波器对于截至频率的过度相对于理想滤波器更加平滑,相对与高斯滤波器更加陡峭.是理想滤波器和高斯滤波器的折中.
3.高斯低通滤波器