文章目录
1. 下载yolo11的源码
- 从github上面下载zip,然后解压文件;
- 下载网址
2. 安装好miniconda和pycharm(社区版就行)
- 安装miniconda和pycharm的方法网上有很多,按照步骤安装就好;
3. 在command窗口通过nvidia-smi查看当前显卡支持安装最大的cuda版本
-
nvidia-smi
显示的 CUDA 版本- 表示显卡驱动支持的最高 CUDA 版本,不是系统实际安装的 CUDA Toolkit 版本。
-
训练和简单推理
- 无需单独安装 CUDA Toolkit 和 cuDNN,直接安装 PyTorch 等框架即可,所需的 CUDA 和 cuDNN 已内置。
-
部署需求(如 TensorRT 导出)
- 需要安装 CUDA Toolkit 和 cuDNN,确保版本与显卡驱动和框架兼容。
-
总结
- 训练/推理:直接安装框架即可。
- 部署/TensorRT:需安装完整的 CUDA Toolkit 和 cuDNN。
C:\Windows\System32>nvidia-smi
Wed Nov 13 19:29:33 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 546.24 Driver Version: 546.24 CUDA Version: 12.3 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 4060 ... WDDM | 00000000:01:00.0 Off | N/A |
| N/A 43C P0 14W / 140W | 0MiB / 8188MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| No running processes found |
+---------------------------------------------------------------------------------------+
4. 在pytorch.org的官网下查看满足当前cuda版本的pytorch版本
-
Pytorch安装注意事项
- 16XX的显卡,安装cu102的版本,否则可能训练出现问题;
- 30XX、40XX显卡,要安装cu111以上的版本,否则无法运行; -
例如我是1660的显卡,则需要安装cu102的版本,我在官方网站找到一个合适的pytorch版本为v1.12.0,如下图所示,后续就需根据pytorch的版本去敲定python的版本
-
5. 根据选定的pytorch版本确定需要安装的python版本
- 例如pytorch的版本是1.12.0,就需要 3.6 <=python版本<=3.8;
6. 使用pycharm打开之前下载解压好的源代码
- 注意打开的路径;确保是从源代码文件夹的根路径打开的;
- 因为解压后的文件夹一般是两个相同名称嵌套的,所以需要手动删除最外层的文件夹,或者使用pycharm从里层文件夹打开源代码;
- 如下图,pycharm就是从ultralytic-main这一层文件夹打开的,里层就是源代码文件;
7. 在pycharm中使用miniconda建好虚拟环境,选择对应python版本
-
按照下图位置创建虚拟环境
-
如下图使用miniconda创建的虚拟环境名称为yolov5-fire-42-master(在pycharm中重新关闭终端,然后再打开即可激活当前虚拟环境)
8. 使用开发者模式安装当前yolo11源码包
-
安装命令
pip install -e .
-
运行以后会自动安装当前项目缺少的模块;
-
如果是yolo5的话需要使用提供的requirements.txt进行安装;
-
此外,在安装好源码包以后,要检查您的 GPU 驱动程序和 CUDA 是否已启用并可通过 PyTorch 访问,请运行以下命令以返回 CUDA 驱动程序是否已启用:
import torch print(torch.cuda.is_available()) # 成功返回True
9. 验证yolo是否能使用
- 在当前虚拟环境的终端输入以下命令
yolo predict model=yolov11n.pt source='https://ultralytics.com/images/bus.jpg' # 默认使用GPU
yolo predict model=yolov11n.pt source='https://ultralytics.com/images/bus.jpg' device=cpu # 使用cpu
- 如下图所示是使用yolo8运行该命令,就会提示使用的python版本是3.8.19,使用的显卡类型是NVIDIA GeForce RTX 3070 Ti Laptop GPU
(yolov5-fire-42-master) PS D:\xujiamiao\ultralytics-main> yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
Ultralytics YOLOv8.2.92 🚀 Python-3.8.19 torch-1.10.0 CUDA:0 (NVIDIA GeForce RTX 3070 Ti Laptop GPU, 8192MiB)
YOLOv8n summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs
Downloading https://ultralytics.com/images/bus.jpg to 'bus.jpg'...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 134k/134k [00:00<00:00, 665kB/s]
image 1/1 D:\xujiamiao\ultralytics-main\bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 129.4ms
Speed: 23.7ms preprocess, 129.4ms inference, 97.2ms postprocess per image at shape (1, 3, 640, 480)
Results saved to D:\text\runs\detect\predict
💡 Learn more at https://docs.ultralytics.com/modes/predict
- 如下图所示是使用yolo8运行该命令,就会提示使用的python版本是3.8.19,使用的CPU类型是12th Gen Intel Core™ i9-12950HX
(yolov5-fire-42-master) PS D:\xujiamiao\ultralytics-main> yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' device=cpu
Ultralytics YOLOv8.2.92 🚀 Python-3.8.19 torch-1.10.0 CPU (12th Gen Intel Core(TM) i9-12950HX)
YOLOv8n summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs
Found https://ultralytics.com/images/bus.jpg locally at bus.jpg
image 1/1 D:\xujiamiao\ultralytics-main\bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 94.2ms
Speed: 4.9ms preprocess, 94.2ms inference, 86.1ms postprocess per image at shape (1, 3, 640, 480)
Results saved to D:\text\runs\detect\predict2
💡 Learn more at https://docs.ultralytics.com/modes/predict