Windows系统配置yolo11训练环境

1. 下载yolo11的源码

2. 安装好miniconda和pycharm(社区版就行)

  • 安装miniconda和pycharm的方法网上有很多,按照步骤安装就好;

3. 在command窗口通过nvidia-smi查看当前显卡支持安装最大的cuda版本

  • nvidia-smi 显示的 CUDA 版本

    • 表示显卡驱动支持的最高 CUDA 版本,不是系统实际安装的 CUDA Toolkit 版本。
  • 训练和简单推理

    • 无需单独安装 CUDA Toolkit 和 cuDNN,直接安装 PyTorch 等框架即可,所需的 CUDA 和 cuDNN 已内置。
  • 部署需求(如 TensorRT 导出)

    • 需要安装 CUDA Toolkit 和 cuDNN,确保版本与显卡驱动和框架兼容。
  • 总结

    • 训练/推理:直接安装框架即可。
    • 部署/TensorRT:需安装完整的 CUDA Toolkit 和 cuDNN。
C:\Windows\System32>nvidia-smi

Wed Nov 13 19:29:33 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 546.24                 Driver Version: 546.24       CUDA Version: 12.3     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                     TCC/WDDM  | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 4060 ...  WDDM  | 00000000:01:00.0 Off |                  N/A |
| N/A   43C    P0              14W / 140W |      0MiB /  8188MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+

+---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory | 	 	  	  
|        ID   ID                                                             Usage      |
|=======================================================================================|
|  No running processes found                                                           |
+---------------------------------------------------------------------------------------+

4. 在pytorch.org的官网下查看满足当前cuda版本的pytorch版本

官方网址

  • Pytorch安装注意事项
    - 16XX的显卡,安装cu102的版本,否则可能训练出现问题;
    - 30XX、40XX显卡,要安装cu111以上的版本,否则无法运行;

  • 例如我是1660的显卡,则需要安装cu102的版本,我在官方网站找到一个合适的pytorch版本为v1.12.0,如下图所示,后续就需根据pytorch的版本去敲定python的版本

  • 在这里插入图片描述

5. 根据选定的pytorch版本确定需要安装的python版本

官方查询文档

  • 例如pytorch的版本是1.12.0,就需要 3.6 <=python版本<=3.8;
    在这里插入图片描述

6. 使用pycharm打开之前下载解压好的源代码

  • 注意打开的路径;确保是从源代码文件夹的根路径打开的;
  • 因为解压后的文件夹一般是两个相同名称嵌套的,所以需要手动删除最外层的文件夹,或者使用pycharm从里层文件夹打开源代码;
  • 如下图,pycharm就是从ultralytic-main这一层文件夹打开的,里层就是源代码文件;
    在这里插入图片描述

7. 在pycharm中使用miniconda建好虚拟环境,选择对应python版本

  • 按照下图位置创建虚拟环境
    在这里插入图片描述

  • 如下图使用miniconda创建的虚拟环境名称为yolov5-fire-42-master(在pycharm中重新关闭终端,然后再打开即可激活当前虚拟环境)
    在这里插入图片描述

8. 使用开发者模式安装当前yolo11源码包

  • 安装命令

    pip install -e . 
    
  • 运行以后会自动安装当前项目缺少的模块;

  • 如果是yolo5的话需要使用提供的requirements.txt进行安装;

  • 此外,在安装好源码包以后,要检查您的 GPU 驱动程序和 CUDA 是否已启用并可通过 PyTorch 访问,请运行以下命令以返回 CUDA 驱动程序是否已启用:

    import torch
    print(torch.cuda.is_available()) # 成功返回True
    

9. 验证yolo是否能使用

  • 在当前虚拟环境的终端输入以下命令
yolo predict model=yolov11n.pt source='https://ultralytics.com/images/bus.jpg' # 默认使用GPU
yolo predict model=yolov11n.pt source='https://ultralytics.com/images/bus.jpg' device=cpu # 使用cpu
  • 如下图所示是使用yolo8运行该命令,就会提示使用的python版本是3.8.19,使用的显卡类型是NVIDIA GeForce RTX 3070 Ti Laptop GPU
(yolov5-fire-42-master) PS D:\xujiamiao\ultralytics-main> yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
Ultralytics YOLOv8.2.92 🚀 Python-3.8.19 torch-1.10.0 CUDA:0 (NVIDIA GeForce RTX 3070 Ti Laptop GPU, 8192MiB)
YOLOv8n summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs

Downloading https://ultralytics.com/images/bus.jpg to 'bus.jpg'...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 134k/134k [00:00<00:00, 665kB/s]
image 1/1 D:\xujiamiao\ultralytics-main\bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 129.4ms
Speed: 23.7ms preprocess, 129.4ms inference, 97.2ms postprocess per image at shape (1, 3, 640, 480)
Results saved to D:\text\runs\detect\predict
💡 Learn more at https://docs.ultralytics.com/modes/predict

  • 如下图所示是使用yolo8运行该命令,就会提示使用的python版本是3.8.19,使用的CPU类型是12th Gen Intel Core™ i9-12950HX
(yolov5-fire-42-master) PS D:\xujiamiao\ultralytics-main> yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' device=cpu 
Ultralytics YOLOv8.2.92 🚀 Python-3.8.19 torch-1.10.0 CPU (12th Gen Intel Core(TM) i9-12950HX)
YOLOv8n summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs

Found https://ultralytics.com/images/bus.jpg locally at bus.jpg
image 1/1 D:\xujiamiao\ultralytics-main\bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 94.2ms
Speed: 4.9ms preprocess, 94.2ms inference, 86.1ms postprocess per image at shape (1, 3, 640, 480)
Results saved to D:\text\runs\detect\predict2
💡 Learn more at https://docs.ultralytics.com/modes/predict
### YOLOv11 配置 CUDA 11.7 环境教程 YOLOv11(假设为用户指代的特定版本或变体)支持 CUDA 11.7 的环境配置需要综合考虑深度学习框架、CUDA 工具包以及相关依赖库的安装与兼容性。以下是关于如何在 Windows 和 Ubuntu 平台上配置 YOLOv11 支持 CUDA 11.7 的详细说明。 #### 1. 安装 CUDA 11.7 在安装 CUDA 11.7 时,可以参考 NVIDIA 官方文档[^3],确保系统满足以下条件: - **Windows**:确保显卡驱动程序已更新至最新版本,并通过官方链接下载 CUDA Toolkit 11.7。 - **Ubuntu**:可以通过 `.run` 或 `.deb` 文件进行安装,具体命令如下: ```bash sudo apt update wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run sudo sh cuda_11.7.0_515.43.04_linux.run ``` #### 2. 安装 cuDNN cuDNN 是 CUDA 的深度神经网络加速库,必须与 CUDA 版本匹配。参考 NVIDIA 官方文档[^3],下载并解压 cuDNN 至指定路径: - **Windows**:将 cuDNN 的 `bin`, `include`, 和 `lib` 文件夹复制到 CUDA 的安装目录。 - **Ubuntu**:执行以下命令完成安装: ```bash tar -xzvf cudnn-11.7-linux-x64-v8.9.0.10.tar.xz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` #### 3. 配置 Anaconda 环境 Anaconda 是常用的 Python 包管理工具,能够简化依赖库的安装过程。根据引用内容[^3],安装 Anaconda 的步骤如下: ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh bash Anaconda3-2023.07-1-Linux-x86_64.sh ``` 创建一个新的 Conda 环境并安装必要的依赖: ```bash conda create -n yolov11 python=3.8 conda activate yolov11 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 pip install opencv-python-headless ``` #### 4. 编译 OpenCV-CUDA 如果 YOLOv11 需要使用 GPU 加速的 OpenCV 功能,则需编译支持 CUDA 的 OpenCV 版本。根据引用内容[^2],编译步骤如下: ```bash git clone https://github.com/opencv/opencv.git cd opencv mkdir build && cd build cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D WITH_CUDA=ON \ -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \ .. make -j$(nproc) sudo make install ``` #### 5. 配置 YOLOv11 源码 从 GitHub 下载 YOLOv11 的源码并进行配置: ```bash git clone https://github.com/example/yolov11.git cd yolov11 pip install -r requirements.txt ``` 确保 PyTorch 和 CUDA 版本匹配,运行以下代码验证: ```python import torch print(torch.cuda.is_available()) # 输出 True 表示成功启用 GPU ``` #### 6. 测试模型推理 加载预训练权重并测试模型推理功能: ```python from yolov11.models import load_model from yolov11.utils import detect_image # 加载模型 model = load_model("yolov11.cfg", "weights/yolov11.weights") # 推理图片 detect_image(model, "test.jpg", "output.jpg") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值