深度学习实现缺陷检测算法汇总

这篇博客总结了深度学习在缺陷检测领域的多种应用,包括布匹、紧固件、纺织物、金属表面等缺陷的检测。文章介绍了不同的深度学习模型,如卷积神经网络、自动编码器、GAN等,以及它们在缺陷定位、分割和分类中的作用。通过实例展示了这些方法的优势和局限性,为该领域的研究和实践提供了参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:Tom Hardy
Date:2020-1-6
来源:总结|深度学习实现缺陷检测

前言

缺陷检测是工业上非常重要的一个应用,由于缺陷多种多样,传统的机器视觉算法很难做到对缺陷特征完整的建模和迁移,复用性不大,要求区分工况,这会浪费大量的人力成本。深度学习在特征提取和定位上取得了非常好的效果,越来越多的学者和工程人员开始将深度学习算法引入到缺陷检测领域中,下面将会介绍几种深度学习算法在缺陷检测领域中的应用。

1、A fast and robust convolutional neural network-based defect detection model in product quality control

检测对象:布匹缺陷。

主要思想:这是一篇比较早的文章了,主要通过对输入图像进行切片,然后把切片图像送入深度学习网络中做判断,较为简单。在推理时,通过滑窗检测方式进行逐位置识别。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

优缺点:
1、 由于使用分类方式,准确率较为高
2、 由于滑窗遍历,速度慢

2、Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network(基于深度卷积网络的接触网支架紧固件缺陷自动检测)

检测对象:紧固件是否缺失。

主要思想:检测接触网支架紧固件是否缺陷,采用方式为Object Detection。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值