
Python面试场景题
文章平均质量分 87
搞Java的小码农
喜欢一起学习的人可以加我微信Nred999
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
终面倒计时5分钟:用`asyncio`解决回调地狱,P8考官追问事件循环机制
面对终面倒计时5分钟的高压情境,面试官抛出如何用`asyncio`解决回调地狱的问题。候选人需在短时间内展示对`asyncio`异步编程的理解,并详细解释事件循环的工作机制,同时对比`concurrent.futures`与`asyncio`的性能差异。紧张氛围中,P8考官紧盯细节,追问事件循环的底层实现及如何避免阻塞。原创 2025-06-06 08:00:00 · 902 阅读 · 0 评论 -
《终面倒计时10分钟:候选人用`asyncio`解决`Callback Hell`,P8考官追问异步锁机制》
在终面倒计时10分钟的关键时刻,面试官抛出一个难题:如何用`asyncio`解决回调地狱(Callback Hell)。候选人展示了如何通过`async`和`await`重写异步代码,但面试官进一步追问:在高并发场景下,如何保证异步锁的正确性和性能?候选人需要阐述`asyncio.Lock`和`asyncio.Semaphore`的使用场景,并对比它们的优劣。原创 2025-06-05 22:00:00 · 710 阅读 · 0 评论 -
终面倒计时10分钟:候选人用trio实现结构化并发,P8考官追问性能瓶颈
在终面倒计时的紧张氛围中,候选人提出使用trio库来解决复杂异步任务管理问题,展示其对结构化并发的理解。然而,P8考官随即追问trio与asyncio在性能上的差异,并要求候选人现场分析潜在瓶颈。候选人需在短时间内解释trio的优势以及如何优化性能,以此证明其技术深度。原创 2025-06-05 21:00:00 · 907 阅读 · 0 评论 -
极限负载测试:用Prometheus监控快速定位内存泄漏点
在一次极限负载测试中,系统QPS飙升至3万时,内存占用持续上升,最终触发OOM。应届生候选人通过Prometheus快速定位到内存泄漏的来源,并与P8考官深入探讨FullGC日志,最终提出优化方案,成功将内存占用稳定在合理范围。原创 2025-04-18 14:00:01 · 707 阅读 · 0 评论 -
终面压力时刻:用Pyroscope定位内存泄漏,P9面试官现场追问数据结构优化
在终面倒计时的高压情境下,候选人被要求分析一个Python应用程序的内存泄漏问题。面试官提供了一段复杂的代码,使用了错误的缓存机制导致内存持续增长。候选人运用Pyroscope工具实时监控内存使用情况,快速定位并修复问题。然而,面试官进一步追问,要求从数据结构设计的角度优化代码逻辑,以避免未来的内存问题。原创 2025-04-18 13:30:00 · 956 阅读 · 0 评论 -
系统设计答辩倒计时:用Raft算法解决分布式一致性问题
在系统设计答辩的最后15分钟,面试官抛出一个挑战:如何在分布式系统中保证数据最终一致性?候选人需要在短时间内设计一个基于Raft共识算法的解决方案,并解释其工作原理、适用场景以及可能出现的局限性。原创 2025-04-18 13:00:00 · 458 阅读 · 0 评论 -
终面倒计时10分钟:用ClickHouse替换Hive,P8考官质疑实时分析性能
终面进行到倒计时阶段,P8考官突然抛出一个技术难题:如何用ClickHouse替代Hive解决大规模实时分析性能问题?候选人需要在10分钟内分析ClickHouse与Hive在分布式查询、列式存储与实时数据处理方面的差异,并提出具体的迁移方案。同时,考官紧盯ClickHouse集群的写入吞吐量与查询延迟,要求候选人现场模拟优化过程,确保实时分析性能满足业务需求。原创 2025-04-18 12:30:00 · 536 阅读 · 0 评论 -
极限性能优化现场:用PyPy解构CPython解释器内存问题
在终面最后10分钟,面试官抛出了一道棘手的问题:如何解决一个Python应用在高并发场景下频繁出现的内存泄漏问题?应届生候选人通过深入分析GIL机制和CPython解释器的内存管理特性,提出用PyPy替代CPython作为底层运行时的方案。在强调PyPy的JIT编译器优势后,候选人进一步解释如何结合`gc`模块和`ObjectSpace`工具定位和修复内存泄漏点,最终成功说服P8考官。原创 2025-04-18 12:00:00 · 939 阅读 · 0 评论 -
终面倒计时30秒:P8面试官追问ZeroRPC性能瓶颈,候选人用Netty优化异步通信
在终面倒计时的高压下,面试官提出使用ZeroRPC构建高并发服务时遇到的性能瓶颈问题。候选人通过分析ZeroRPC的底层通信机制,发现其在高并发场景下存在网络传输效率低下的问题。候选人提出使用Netty进行优化,通过自定义协议与零拷贝技术显著提升异步通信性能,最终赢得了面试官的认可。原创 2025-04-18 11:30:00 · 299 阅读 · 0 评论 -
终面倒计时5分钟:用`Arthas`调试线上OOM,P8考官追问`FullGC`优化方案
在紧张的终面倒计时5分钟内,应届生被要求分析线上Java应用出现的`OutOfMemoryError`(OOM)问题,并使用`Arthas`工具定位内存泄漏源。与此同时,P8考官不断追问`FullGC`日志的细节,要求候选人提出优化建议,包括内存调优、垃圾回收策略调整以及代码层面的改进措施。原创 2025-04-18 11:00:00 · 807 阅读 · 0 评论 -
极限性能优化:用PyTorch和ONNX实现模型推理加速
在终端性能压力下,如何利用PyTorch和ONNX技术优化深度学习模型的推理性能?从模型量化、图优化到跨框架部署,深入探讨如何将推理时间从500ms降至50ms,同时保持模型精度。原创 2025-04-18 10:30:01 · 991 阅读 · 0 评论