监督学习、无监督学习、强化学习概念

本文概述了监督学习的标签预测、无监督学习的聚类发现和强化学习的动态优化过程。通过实例揭示了如何从有标签数据中学习,如何挖掘未标记数据的内在结构,以及如何通过奖励与惩罚机制达成目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

监督学习:监督学习即具有特征(feature)和标签(label)的,即使数据是没有标签的,也可以通过学习特征和标签之间的关系,判断出标签——分类。
简言之:提供数据,预测标签。通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出。
无监督学习:无监督学习即只有特征,没有标签。只有特征,没有标签的训练数据集中,通过数据之间的内在联系和相似性将他们分成若干类——聚类。根据数据本身的特性,从数据中根据某种度量学习出一些特性。
简言之:只给出数据,寻找隐藏的关系。
强化学习:强化学习与半监督学习类似,均使用未标记的数据,但是强化学习通过算法学习是否距离目标越来越近,利用了激励与惩罚函数。
简言之:通过不断激励与惩罚,达到最终目的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值