DataFrame GroupBy 之后的取值

本文深入探讨了在Python pandas库中使用DataFrameGroupBy函数进行数据分析的高级技巧,特别是在电影评分数据集上的应用。通过设置as_index=False参数,确保了原始列名在聚合操作后的DataFrame中可以直接访问。文章详细介绍了如何筛选出至少有100条评论且平均评分超过4分的电影,最后展示了如何按评分数量和平均评分排序并选取前10部电影。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DataFrame GroupBy 之后的取值

movies_stats = data.groupby(‘movieTitle’,as_index=False).agg({‘rating’:[‘size’,‘mean’]})
atleast_size_100 = movies_stats[‘rating’][‘size’] >= 100
atleast_rating_4 = movies_stats[‘rating’][‘mean’] > 4
data_sort = movies_stats[atleast_size_100].sort_values([(‘rating’,‘mean’)], ascending=False)
data_sort2 = movies_stats[atleast_rating_4].sort_values([(‘rating’,‘size’)], ascending=False)
print(data_sort2.head(10))
print(type(data_sort2))
print(data_sort2[‘movieTitle’].head(10))
print(data_sort2[‘rating’][‘size’].head(10))

需要在groupby函数中加入as_index=False,默认as_index=True才可以保证原有的Column可以通过 df[‘column’]的方式获得,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值