从RetrievalQA迁移到LCEL:提升LangChain问答系统的灵活性与性能
引言
在自然语言处理和人工智能领域,问答系统一直是一个备受关注的研究方向。LangChain作为一个强大的框架,为开发者提供了构建复杂AI应用的工具。本文将探讨如何从LangChain的RetrievalQA链迁移到更灵活的LCEL (LangChain Expression Language)实现,以提升问答系统的可定制性和性能。
RetrievalQA vs LCEL
RetrievalQA的优势与局限
RetrievalQA链提供了一种简单直接的方式来实现基于检索的问答系统。它封装了文档检索、上下文整合和问题回答的整个过程,使得开发者可以快速构建一个功能完整的问答系统。
然而,RetrievalQA也存在一些局限性:
- 可定制性有限:许多细节,如提示词的设计和文档格式化,只能通过特定参数进行有限的配置。
- 难以获取源文档:在某些应用场景中,我们可能需要返回用于回答的源文档,但RetrievalQA不易实现这一点。
- 缺乏高级功能支持:如流式处理和异步操作等现代应用所需的功能,在RetrievalQA中难以实现。
LCEL的优势
LCEL (LangChain Expression Language)提供了一种更灵活、更强大的方式来构建问答系统:
- 高度可定制:LCEL允许开发者精细控制整个问答流程的每个环节。
- 易于获取和处理中间结果:包括检索到的文档在内的所有中间数据都可以轻松访问和处理。
- 支持现代应用特性:如流式处理、异步操作等高级功能都可以在LCEL中实现。
- 组件化设计:便于重用和组合不同的功能模块,提高开发效率。
从RetrievalQA迁移到LCEL
让我们通过一个具体的例子来看看如何从RetrievalQA迁移到LCEL。我们将使用一篇关于自主代理的博客文章作为数据源,构建一个简单的问答系统。
共同的准备工作
首先,我们需要安装必要的依赖并准备数据:
%pip install --upgrade --quiet langchain-community langchain langchain-openai faiss-cpu
import os
from getpass import getpass
os.environ["OPENAI_API_KEY"] = getpass()
# 加载文档
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from la