如何使用 Robocorp Action Server 与 LangChain 拓展 AI 能力

Robocorp 是扩展 AI 代理、助手和共事助手自定义功能的最便捷方式之一。本文将介绍如何使用 Robocorp Action Server 和 LangChain 开始构建自定义动作。

技术背景介绍

Robocorp 提供了一套工具,用于快速创建可以与人工智能模型交互的自定义 API 动作。通过集成 LangChain 应用,可以构建复杂的 AI 应用程序,增强 AI 的定制与执行能力。

核心原理解析

Robocorp 的 Action Server 允许用户定义一组动作,并通过 HTTP 接口公开这些动作。LangChain 提供了一种方式将这些动作集成到 AI 代理中,使其能够通过自然语言进行调用。

代码实现演示

首先,在你的 LangChain 应用中安装 langchain-robocorp 包:

# 安装包
%pip install --upgrade --quiet langchain-robocorp

创建新的 Action Server 时,会生成一个包括 action.py 的目录,您可以在 action.py 中添加自定义的 Python 函数作为动作。例如:

@action
def get_weather_forecast(city: str, days: int, scale: str = "celsius") -> str:
    """
    返回指定城市的天气预报。

    Args:
        city (str): 查询天气的目标城市
        days: 返回多少天的天气预报
        scale (str): 使用的温度单位,可以是 "celsius" 或 "fahrenheit"

    Returns:
        str: 请求的天气预报
    """
    return "75F and sunny :)"

启动服务器:

action-server start

然后,您可以通过 http://localhost:8080 测试该功能。

配置环境:

# 可选的环境变量设置
LANGCHAIN_TRACING_V2=true  # 启用 LangSmith 日志追踪

使用代码如下:

from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
from langchain_core.messages import SystemMessage
from langchain_openai import ChatOpenAI
from langchain_robocorp import ActionServerToolkit

# 初始化 LLM 聊天模型
llm = ChatOpenAI(model="gpt-4", temperature=0)

# 初始化 Action Server Toolkit
toolkit = ActionServerToolkit(url="http://localhost:8080", report_trace=True)
tools = toolkit.get_tools()

# 初始化代理
system_message = SystemMessage(content="You are a helpful assistant")
prompt = OpenAIFunctionsAgent.create_prompt(system_message)
agent = OpenAIFunctionsAgent(llm=llm, prompt=prompt, tools=tools)

executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

executor.invoke("What is the current weather today in San Francisco in fahrenheit?")

应用场景分析

通过使用 Robocorp Action Server,您可以快速创建多种功能性动作,不仅用于获取信息,还可以实现复杂的自动化流程。配合 LangChain,您可以将这些服务无缝整合到 AI 应用程序中,提高交互智能。

实践建议

  • 对于复杂的动作,可以考虑以模块化的方式进行开发,确保每个动作的功能单一且可测试。
  • 在开发的过程中,使用环境变量进行功能开关的管理,可以提高应用的扩展性和调试灵活性。
  • 结合 LangChain 的强大功能,确保您定义的 API 符合应用需求,并能够通过自然语言进行高效调用。

如果遇到问题欢迎在评论区交流。
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值