# 使用Slack导出数据加载LangChain聊天消息
在本篇文章中,我们将展示如何使用Slack聊天加载器将导出的Slack对话映射到LangChain聊天消息中。这个过程分为三个步骤:
1. **创建消息导出**
目前(截至2023/08/23),此加载器最有效支持通过Slack导出生成的文件格式。请按照Slack提供的最新说明导出你需要的对话线程。LangChain库中也有示例。
```python
import requests
# 从示例链接下载Slack消息导出
permalink = "https://raw.githubusercontent.com/langchain-ai/langchain/342087bdfa3ac31d622385d0f2d09cf5e06c8db3/libs/langchain/tests/integration_tests/examples/slack_export.zip"
response = requests.get(permalink)
with open("slack_dump.zip", "wb") as f:
f.write(response.content)
- 创建聊天加载器
提供加载器路径,指向ZIP目录。你可以选择指定映射到AI消息的用户ID,以及配置是否合并消息运行。
from langchain_community.chat_loaders.slack import SlackChatLoader
# Slack聊天加载器实例化
loader = SlackChatLoader(
path="slack_dump.zip",
)
# API参考: SlackChatLoader
- 加载消息
load()
或lazy_load()
方法会返回一个"ChatSessions"列表,这其中包含每个已加载对话的消息列表。
from typing import List
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
from langchain_core.chat_sessions import ChatSession
# 加载原始消息
raw_messages = loader.lazy_load()
# 合并同一发送者的连续消息
merged_messages = merge_chat_runs(raw_messages)
# 将特定发送者的消息转为AI消息
messages: List[ChatSession] = list(
map_ai_messages(merged_messages, sender="U0500003428")
)
# API参考: map_ai_messages | merge_chat_runs | ChatSession
后续步骤
你可以根据需要使用这些消息进行模型微调、选择少样本示例,或者直接预测下一条消息。
from langchain_openai import ChatOpenAI
# 使用OpenAI的语言模型进行预测
llm = ChatOpenAI()
for chunk in llm.stream(messages[1]["messages"]):
print(chunk.content, end="", flush=True)
# API参考: ChatOpenAI
在这里,我们完成了从Slack导出的消息到LangChain聊天消息的转换,并展示了如何利用这些消息进行进一步的处理。
如果遇到问题欢迎在评论区交流。
---END---