前言
本文分别从宏观和微观角度对目标检测模型的backbone进行设计,进而提出DetectorRS,
-
在宏观上,提出递归特征金字塔(Recursive Feature Pyramid,RFP),它是在FPN的基础上建立的,通过将FPN中额外的反馈连接整合到自底向上的backbone中,以构成RFP,如下图所示,图中的黑色实线箭头就是所提到的反馈连接。具体来说,这个反馈连接将detector head中直接接收梯度的特征(应该就是语义信息丰富的特征)带回到backbone的较低层级的特征层中,从而能够加速训练并增强性能。
-
在微观上,提出可转换的空洞卷积(Switchable Atrous Convolution,SAC),它以不同的空洞率(atrous rates)对相同的输入特征进行卷积,然后使用switch函数合并卷积后的结果,如下图所示,switch函数在空间上是相关的,即特征图上的每个位置可能需要不同的switch函数来控制SAC的输出。
Recursive Feature Pyramid
RFP
设BiB_iBi表示bottom-up的主干网络中的第i个stage,FiF_iFi表示top-down的第i个FPN操作,那么上图(a)FPN的输出就是:
如上图(b)的高亮部分所示所示,RFP向FPN中加入了反馈连接。设RiR_iRi表示将特征连接到bottom-up主干网络之前的特征转换(这个特征转换应该就是图c中的绿色圆点),那么RFP的输出特征fif_ifi就为:
可以看到RFP是一个递归的操作,把它展开为有序网络为(图c就是将RFP展开为一个2阶的有序网络):
展开为有序网络之后,其实就是step-1中的FPN输出的特征图fi1f^1_ifi1经过RiR_iRi操作后,与bottom-up主干网络连接起来,然后再经过step-2中的FPN得到特征图fi2f^2_ifi2,从图c可以看到最终还要再经过一个融合操作(红色圆点)得到最终的输出特征图。
为了让ResNet能够同时接收xx