C/C++ 使用QR(正交三角)求特征值eigen values算法详解及源码

使用QR(正交三角)求特征值算法是一种常用的求解特征值的方法。该方法基于QR分解的概念,将输入的矩阵通过一系列正交相似变换,使其转化为上三角矩阵,从而简化了求解特征值的过程。

下面详细介绍使用QR(正交三角)求特征值的算法步骤:

  1. 对于输入的n x n矩阵A,进行QR分解,将其分解为两个矩阵Q和R,使得A = QR。

  2. 循环执行以下步骤,直到收敛(达到所需的精度)为止:
    a. 计算RQ,得到一个新的矩阵A’。
    b. 将A’再次进行QR分解,得到新的矩阵Q’和R’。
    c. 将R’和Q’相乘,并更新A为新的矩阵A’ = R’Q’。
    d. 检查A’是否收敛,如果是,则停止迭代。

  3. 迭代结束后,A’的对角线元素即为矩阵A的特征值。

使用QR(正交三角)求特征值的算法优点:

  1. 相对于其他特征值求解方法,QR(正交三角)算法具有较好的数值稳定性和收敛性。
  2. 该算法可以处理任意实对称矩阵和复矩阵,因此适用范围广。

使用QR(正交三角)求特征值的算法缺点:

  1. 对于大型矩阵,QR分解的计算量较大,因此在计算效率上可能不如其他特征值求解方法。
  2. 该算法在某些情况下可能会出现收敛问题,需要通过设定合适的停止条件来确保结果的准确性。

以下是使用C++语言实现的使用QR(正交三角)求特征值的算法代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值