立体角的概念

本文介绍了立体角的概念,从二维弧度出发,通过公式推导解释了三维空间中立体角的定义。文章详细阐述了立体角与球面面积的关系,并运用微分思想将球面上的面积近似为矩形,从而得出立体角的表达式dw=sinθdθdΦ。通过对立体角的积分计算,得出整个球面的立体角为4π,而对cosθdw在半球上积分的结果为π。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在谈立体角之前,先看看二维对于弧度的定义:弧长等于半径的弧,其所对的圆心角为1弧度。理解为弧长与半径的比,即如果这段弧的长度 = 半径,则对应的角度为1弧度。

image.png

公式如下:

image.png

二维的弧度拓展到三维则是立体角,公式如下:

image.png

dAdAdA为球面上的面积,r为球半径,因此根据球的表面积公式s = 4πr² 可知,对于整个球面的立体角为4π

立体角的推导:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值