基于四阶贝塞尔曲线的无人驾驶可行轨迹规划

本文提出了一种基于四阶贝塞尔曲线的无人驾驶轨迹规划方法,确保轨迹满足运动学约束和曲率连续性。通过解耦速度控制和转向控制,生成满足初始和目标状态的曲线,同时考虑了无人车的转向能力和加速度限制。轨迹规划通过调整三个自由变量来确定四阶贝塞尔曲线的控制点,以满足无人车的初始和目标状态约束。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于四阶贝塞尔曲线的无人驾驶可行轨迹规划

背景

对于实际的无人车系统来说, 轨迹规划需要保证其规划出来的轨迹满足运动学约束、侧滑约束以及执行机构约束。为了生成满足无人车初始状态约束、目标状态约束的局部可行轨迹, 提出了一种基于四阶贝塞尔曲线的轨迹规划方法. 在该方法中, 轨迹规划问题首先被分解为轨形规划速度规划两个子问题.。为了满足运动学约束、初始状态约束、目标状态约束以及曲率连续约束, 由3 个参数确定的四阶贝塞尔曲线来规划轨迹形状

采用四阶贝塞尔曲线的优点

1、本文提出的轨迹规划方法是基于四阶贝塞尔曲线的, 其生成的轨迹满足运动学约束, 并且轨迹以及轨迹曲率是连续的。
2、本文生成的轨迹曲率是有界的.该边界由无人车的转向能力确定, 从而保证该轨迹对转向机构来说是可行的。
3、 本文生成的轨迹速度及加速度是连续的, 并且加速度是有界的。
4、 本文提出的轨迹规划方法对参数初值是不敏感的, 不需要预先存储参数与状态的对应关系。

问题描述

对于移动机器人来说, 轨迹生成问题主要研究如何生成一系列动作, 使得机器人由初始状态到达目标状态. 对于无人车来说, 其初始状态包括其二维坐标(x; y)、航向角Ã 以及曲率。
在这里插入图片描述
其中曲率、转弯半径、前后轮轴距以及前轮转向角之间的关系:
在这里插入图片描述

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值