
GAN
tsstaitixu
yes
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
GAN 原理
各种散度交叉熵KL散度不对称性 非负性JS 散度对称性 0-1之间 越小越相似GAN 原理根据原始GAN定义的判别器loss,我们可以得到最优判别器的形式;而在最优判别器下,可以把原始GAN定义的生成器loss等价变换为最小化真实分布PrP_rPr与生成分布PgP_gPg之间的JS散度。固定G,求出最优的D,然后代入max DV(G,D),得到的是JS散度,最小为...原创 2020-03-06 15:29:46 · 572 阅读 · 0 评论 -
ConditionalGAN
Conditional GANAC-GANAC-GANConditional Image Synthesis with Auxiliary Classifier GANsMain porposeGenerate images employ lable conditioning.Loss FuncG: Maximum LC-lSD: Maximum LSNet S...原创 2018-10-12 09:37:09 · 190 阅读 · 0 评论 -
Unsupervised Conditional Generation*Domain Transfer
UnsupervisedConditional Generation*Domain TransferCycleGAN1.Main Porpose2.Structure3.Loss Func4.Metrics5.DatasetsStarGAN1. Main Porpose2.Structure3. Loss Func4. Metric5.DataSets6.Other ContributionPa...原创 2018-10-19 14:39:11 · 286 阅读 · 0 评论 -
Applyment of I2I(Style Transfer)
CartoonGAN1.Style:normal->cartoon2.Network Strucure3.Loss FuncAdversarial loss(!! without edge:fake)Content Loss:pretrianed VGGTotal4.MetricQualitative :images5.DataSetsPhotos:Fli...原创 2018-10-19 15:15:02 · 430 阅读 · 0 评论