作为架构师,在DeepSeek大模型快速发展的背景下,需要构建多维度的知识体系并寻找战略落地的有效路径。以下是系统化的学习方向和战略切入建议:
一、架构师必备的DeepSeek技术认知体系
1. 核心技术栈
知识领域 | 关键学习内容 | 推荐工具/框架 |
---|---|---|
模型架构 | - MoE混合专家机制实现原理 - 长上下文窗口优化策略 - 多模态融合架构 |
Megatron-LLM, DeepSpeed-MoE |
训练优化 | - 万亿token训练数据工程 - 3D并行训练策略 - 绿色计算(能耗优化) |
Colossal-AI, vLLM |
推理部署 | - 动态批处理技术 - 多级量化策略(QAT/PTQ) - 国产芯片适配方案 |
TensorRT-LLM, LMDeploy |
安全治理 | - 模型逆向工程防护 - 差分隐私训练 - 合规审计追踪 |
FedML, Homomorphic Encryption |