- 博客(114)
- 资源 (5)
- 收藏
- 关注
原创 PYTHON日志神器nb_log详细介绍和使用说明
nb_log 是一个 Python 日志库,设计目标是简化日志配置并提供高性能的异步日志记录功能。支持多进程安全、自动日志文件分割、彩色终端输出等功能,适合高并发场景。核心特性 异步高性能:默认使用异步写入,避免日志 I/O 阻塞主程序。 多进程安全:支持多进程环境下同时写入同一日志文件。 智能分割:按时间(天/小时)或文件大小自动分割日志文件。 彩色输出:终端日志支持颜色区分不同级别(DEBUG/INFO/WARN/ERROR)。 灵活配置:支持 JSON 格式
2025-07-18 07:35:06
623
原创 VS Code编译和Debug环境配置
本文详细介绍了在VSCode中配置C语言编译和调试环境的完整流程。主要内容包括:1)安装TDM-GCC编译器并配置环境变量;2)安装必要的VSCode插件;3)配置tasks.json和launch.json文件;4)详细说明编译、调试操作流程及快捷键;5)提供高级调试技巧(条件断点、内存查看等)及常见问题解决方案。文章通过具体示例演示如何构建完整的C语言开发环境,帮助开发者在VSCode中高效进行代码调试和问题排查。
2025-07-18 07:15:00
520
原创 通信:单工、半双工和全双工定义和传输时间
本文系统介绍了三种数据传输模式:单工(单向传输,如广播)、半双工(双向交替传输,如对讲机)和全双工(双向同时传输,如电话)。重点分析了各模式的特点、应用场景及传输时间计算方法,其中半双工因存在切换延迟而影响实时性。文章还探讨了现代通信技术(如5G、WiFi6)中的双工演进,并对比了不同物理介质对传输模式的支持。最后展望了全双工无线通信、智能双工切换等未来发展方向,为通信系统设计提供了理论参考。
2025-07-16 07:15:00
723
原创 Pycharm和Anaconda安装及Python求解器设置
Python开发环境搭建指南 本文详细介绍了Python开发环境的配置方法,涵盖Python安装、PyCharm配置以及Anaconda的使用。主要内容包括: Python安装:强调勾选Add to PATH选项,并验证安装 PyCharm配置:讲解专业版与社区版区别,安装步骤及解释器设置 Anaconda安装:Windows版详细安装流程及环境管理命令 工具对比:分析PyCharm(专业IDE)与Anaconda(科学计算发行版)的适用场景 整合方案:推荐在PyCharm中使用Anaconda环境作为解释
2025-07-11 07:15:00
607
原创 微电网系列之分布式电源类型
本文概述了微电网中分布式电源的控制技术,重点分析了光伏发电、风力发电和储能发电三大系统。光伏发电部分详细介绍了MPPT算法和孤岛检测方法;风力发电系统阐述了分类方式、MPPT控制和低电压穿越技术;储能发电则从储能类型和控制策略两方面展开说明。文章通过表格形式系统梳理了各类技术的实现原理、优缺点和应用场景,为微电网分布式电源的优化控制提供了技术参考。
2025-07-03 07:15:00
690
翻译 翻译:LiMoE:来自汽车场景的激光雷达表征学习器的混合模型 (二)
摘要:本文提出LiMoE框架,通过融合激光雷达点云的多种表示形式(距离图像、稀疏体素和原始点云)来提升3D场景理解能力。该框架采用三阶段学习:图像到激光雷达的预训练、对比混合学习(CML)动态融合多模态特征,以及语义混合监督(SMS)优化下游任务性能。实验表明,LiMoE在11个激光雷达语义分割数据集上显著优于单一表示方法,最高提升5.66% mIoU,并展现出优异的跨数据集泛化能力和抗干扰鲁棒性。消融研究验证了多表示融合的有效性,同时保持高效推理速度(8.3 FPS)。该工作为构建更强大的激光雷达感知系统
2025-07-02 07:30:00
16
原创 微电网系列之PQ控制实现
本文系统阐述了微电网中PQ控制型变流器的关键技术实现。重点分析了基于电压定向的双闭环控制策略,详细推导了坐标变换体系(Clarke/Park变换)及其数学模型。研究指出:通过d-q解耦、电压前馈和电流闭环控制可实现95%以上的功率解耦度;在同步旋转坐标系下采用SVPWM调制,可达到功率跟踪误差<2%、THD<3%的并网标准。文章还探讨了虚拟磁链定向、模型预测控制等前沿技术,并对比了PQ控制与V/f控制的特点,为微电网中分布式电源的变流器选型提供了理论依据。
2025-07-02 07:15:00
1163
原创 微电网系列之PQ控制基本原理
本文介绍了PQ控制的基本工作原理及其在微电网中的应用。PQ控制通过三层闭环(功率计算、电流控制和电压生成)实现变流器输出功率对给定指令的精确跟踪,具有快速动态响应(<10ms)和低谐波失真(THD<5%)的特点。文章详细分析了PQ控制在并网模式下的工作特性,指出其依赖电网提供电压/频率基准的局限性,并推导了三相静止坐标系下的数学模型。最后说明PQ控制变流器通过调节输出电压可实现四种基本工作模式,但实际应用中多用于单位功率因数逆变状态。
2025-07-02 07:00:00
717
原创 微电网系列之变流器分类
微电网变流器控制技术是实现微电网稳定运行的核心。本文系统梳理了交流微电网中三种主流变流器控制方法:PQ控制(功率跟随型)、V/f控制(电压源型)和下垂控制(自主调频型),重点分析了各类控制的原理架构、性能特点和应用场景。研究表明,下垂控制因其无通信并联优势成为多变流器协同运行的首选方案,而虚拟同步发电机技术通过模拟传统发电机特性,有效提升了系统惯性支撑能力。文章还揭示了控制策略与系统阻抗的耦合关系,为微电网变流器的优化设计提供了理论依据。
2025-07-01 07:30:00
871
原创 微电网系列之微电网的故障检测与接入标准
微电网保护面临分布式电源接入带来的核心挑战:故障电流减小、潮流双向流动、运行模式切换等导致传统保护失效。文章对比微电网与传统配电网保护差异,分析IEEE1574系列标准的不足,介绍中国在自适应保护策略(动态定值切换、多判据融合)和分层协同保护架构的创新实践。关键解决方案包括虚拟阻抗控制、广域协同保护和构网型变流器技术,并对比了并网/孤岛模式下的保护配置差异。研究指出未来需完善标准体系,发展人工智能预警等智能保护技术,以应对微电网保护的复杂需求。
2025-07-01 07:15:00
1943
翻译 翻译:LiMoE:来自汽车场景的激光雷达表征学习器的混合模型 (一)
本文提出LiMoE框架,通过专家混合模型(MoE)整合激光雷达数据的多种表示形式(距离图像、稀疏体素和原始点云),以提升3D场景理解能力。该方法包含三个阶段:1)图像到激光雷达的知识迁移预训练;2)对比混合学习动态融合不同表示的特征;3)语义混合监督优化下游分割性能。实验在11个数据集上验证了该方法的有效性,显著优于现有技术。LiMoE首次将MoE引入激光雷达表示学习,为自动驾驶系统提供了更鲁棒的感知解决方案。代码已开源。
2025-07-01 07:00:00
44
翻译 翻译:UniScene:统一的以占用情况为中心的驾驶场景生成(四)
图 17 展示了 UniScene 生成大规模连贯场景的能力,突出了该模型在广阔环境中生成时空一致输出的能力。图 18 展示了 UniScene 可控生成属性多样的视频的能力,强调了其能够根据不同的输入配置生成具有所需属性变化的逼真视频输出。此外,图 20 展示了 UniScene 在场景编辑中的应用,表明该模型能够根据编辑后的场景几何形状生成一致且逼真的结果。这些结果以多视角视频输出的形式呈现,反映了几何形状的变化,展示了模型在基于编辑后的场景几何形状生成一致且逼真的输出方面的灵活性。
2025-06-30 09:08:03
41
原创 微电网系列之微电网的孤岛运行
基础解耦(固定Zᵥ)→ 动态优化(自适应Zᵥ)→ 系统协同(VSG+MPC+Zᵥ)未来突破点在于智能算法与稳定性边界的融合,实现“阻抗云调度”以支撑100%新能源渗透率的微电网安全运行。
2025-06-30 07:15:00
1079
原创 微电网系列之规划和运行控制
微电网规划需紧密结合运行策略,基于当地资源优化配置分布式发电单元并设计网络结构,以实现可靠、安全、经济、环保的目标;其运行则依赖能量管理系统,通过灵活调度分布式电源、储能和负荷来实现动态优化分配,最终达成经济高效、绿色优质的供电。
2025-06-30 07:15:00
2108
翻译 翻译:UniScene:统一的以占用情况为中心的驾驶场景生成(三)
为了解决这些方法存在的问题,我们提出了占用率生成模型,能够生成高保真度的时序三维场景序列,并有效保持时间一致性。这些结果以多视角视频输出的形式呈现,反映了几何形状的变化,展示了模型在基于编辑后的场景几何形状生成一致且逼真的输出方面的灵活性。我们的方法在采样过程中注入了密集的外观先验,并结合了明确的几何感知,从而在不同帧中生成了高保真且一致的移动汽车。的可扩展性,以证明我们所提出方法的潜力。这些可视化结果表明,该模型能够在之前未见过的场景中生成逼真的占用率输出,同时在分布外的情况下保持结构和语义的一致性。
2025-06-29 09:05:29
22
翻译 翻译:UniScene:统一的以占用情况为中心的驾驶场景生成(二)
本文提出了一种先验引导的稀疏建模方法UniScene,用于自动驾驶场景的高效多模态数据生成。该方法通过语义占用网格的稀疏处理优化计算效率,结合体绘制技术生成激光雷达点云,并引入反射强度头和光线丢弃头提升真实性。实验表明,UniScene在NuScenes数据集上实现了优于现有方法的表现:占用重建mIoU提升10.96%,激光雷达生成MMD指标提升31.62%,且支持跨视角一致的多视角视频生成。消融研究验证了时序信息、稀疏采样等关键设计的有效性。该系统还能通过生成增强数据提升下游任务性能,但存在计算资源消耗大
2025-06-29 09:05:08
18
翻译 翻译:UniScene:统一的以占用情况为中心的驾驶场景生成(一)
“所谓坚持,就是觉得还有希望!UniScene:统一的以占用情况为中心的驾驶场景生成BohanLi1,2JiazheGuo3∗HongsiLiu2∗YingshuangZou3∗YikangDing4∗XiwuChen5HuZhu2FeiyangTan5ChiZhang5TiancaiWang4ShuchangZhou4LiZhang6XiaojuanQi7。
2025-06-28 11:45:32
21
翻译 翻译:DepthCrafter:生成适用于开放世界视频的连贯长深度序列(三)
《DepthCrafter:基于三阶段训练策略的视频深度估计方法》摘要:本文提出DepthCrafter视频深度估计框架,采用三阶段训练策略提升模型性能。在技术实现上,该方法基于EDM框架训练U-Net模型,通过缓存机制优化训练效率。实验表明,仅需5步去噪即可优于现有方法(如Marigold和Depth-Anything-V2),在多个数据集(Sintel、ScanNet等)上验证了方法的有效性。研究还探讨了无分类器引导对深度细节的影响,发现虽能提升视觉效果但会轻微降低精度。该工作为视频深度估计提供了高效解
2025-06-28 11:31:26
21
翻译 翻译:DepthCrafter:生成适用于开放世界视频的连贯长深度序列(二)
与图像深度估计不同,图像深度估计可以从单帧图像确定相对深度的分布,视频深度估计需要一个长时上下文来准确排列整个视频的深度分布,并保持时间一致性。考虑到两种风格的配对数据集以及对长时序上下文的需求,我们设计了一种三阶段训练策略,以获取丰富的视频内容、精确的深度细节以及对长且可变序列的支持。我们相信,进一步的工程努力,例如模型蒸馏和量化,能够进一步提升我们方法的实用性。能够为各种下游应用提供支持,例如前景抠像、深度切片、雾效以及基于深度的视频生成,它能为开放世界的视频提供具有精细细节且时间上一致的深度序列。
2025-06-21 11:16:49
27
翻译 翻译:DepthCrafter_生成适用于开放世界视频的连贯长深度序列(一)
DepthCrafter:开放世界视频的连贯长深度序列生成方法 摘要:本文提出DepthCrafter,一种创新的视频深度估计方法,能够为多样化的开放世界视频生成具有精细细节且时间连贯的长深度序列(最长110帧)。该方法基于预训练的视频扩散模型,通过精心设计的三阶段训练策略,融合真实数据集的内容多样性和合成数据集的精确深度优势。无需依赖相机姿态或光流等附加信息,DepthCrafter采用分段处理策略实现对超长视频的支持。实验表明,该方法在零样本设置下显著优于现有技术,并支持多种深度相关的下游应用。核心创新
2025-06-21 11:10:20
23
翻译 翻译:CarPlanner:用于自动驾驶大规模强化学习的一致性自回归轨迹规划(二)
本文摘要:实验比较了反应式与非反应式转换模型在自动驾驶规划中的表现,发现非反应式模型在当前实现中更具优势。研究验证了增加训练时间范围对提升性能的积极作用,并探讨了不同监督信号(可微损失 vs 强化学习奖励)对轨迹生成的影响。结果表明,强化学习框架能产生更高质量的多模态轨迹集,且将模式表示分解为纵向和横向分量能显著提升性能。特别地,一致性框架在闭环性能上表现优异,而基于模型的强化学习方法展现出整合长期规划能力的潜力。这些发现为自动驾驶规划算法的优化提供了重要参考。
2025-06-20 19:06:23
65
翻译 翻译:CarPlanner:用于自动驾驶大规模强化学习的一致性自回归轨迹规划(一)
的训练效率、普通和一致的自回归框架的性能、在强化学习训练中使用反应式和非反应式模型的情况,以及改变时间范围所产生的影响。值得注意的是,在训练轨迹生成器时,我们可以灵活选择使用强化学习(它包含两个部分:交叉熵损失和辅助任务损失。带有模仿学习的生成器损失。损失由三部分组成:策略损失、价值损失和熵损失。,而是分别探索它们各自的特点。诱导出的策略分布(高斯分布的均值和标准差),函数。无模型设置下的训练效率比较。我们将基于模型的框架的效率与。价值、策略和熵损失的量级分别为。训练出来的,用于模拟智能体的轨迹。
2025-06-20 19:02:33
31
原创 手阳明大肠经之上廉穴
上廉又名:1.手上廉。2.手之上廉。所属经络:手阳明大肠经定位在前臂背面桡侧,当阳溪穴与曲池穴连线上,肘横纹下3寸处。主治①肘臂痛,半身不遂,手臂麻木;②头痛;③肠鸣腹痛;④脑血管病后遗症。功效舒筋活络,理气调肠,清热利尿。经验应用现代常用于治疗臂神经痛、上肢麻木、瘫痪、肠炎等。配肩髃、合谷主治上肢麻木、疼痛。出处1.《针灸甲乙经》:在三里下一寸。释义1.廉:棱角、侧边也,是分肉侧之意。
2025-06-20 18:45:32
864
原创 微电网系列之微电网的运行控制
《微电网变流器控制技术发展与趋势》摘要(148字) 微电网稳定运行的核心在于变流器控制技术,当前电压源型变流器(VSC)为主流,尤以两电平电流控制模式(CCM-VSC)采用SPWM/SVPWM调制实现功率调节。技术发展呈现三大方向:高效化方面,三电平拓扑可降低损耗和谐波;智能化方面,机器学习与MPC算法提升动态响应;构网化方面,电压控制模式(VCM-VSC)支持独立组网和黑启动。未来趋势将聚焦多电平拓扑、AI算法融合及构网型变流器应用,实现"高效-智能-构网"的协同发展。
2025-06-20 18:18:59
842
翻译 翻译:CarPlanner:用于自动驾驶大规模强化学习的一致性自回归轨迹规划(二)
本文提出CarPlanner,一种基于强化学习的自回归轨迹规划框架。该方法通过模式选择器将驾驶行为分解为纵向速度与横向路线模式,使用Transformer解码器融合多模态特征,并采用规则增强选择器优化轨迹输出。实验表明,在nuPlan数据集上,该方法在非反应式环境中全面超越现有规则型、模仿学习和强化学习方法,闭环得分提升显著。消融研究验证了奖励设计和不变量视图模块的有效性。研究同时揭示了强化学习在解决模仿学习因果混淆问题上的优势。该方法为自动驾驶规划提供了新的强化学习范式,但泛化能力仍待进一步提升。
2025-06-19 19:03:27
43
翻译 翻译:CarPlanner:用于自动驾驶大规模强化学习的一致性自回归轨迹规划(一)
摘要:本文提出CarPlanner——一种基于强化学习的自回归轨迹规划框架,解决了自动驾驶领域RL算法在大规模场景中训练效率低和性能差的问题。该框架通过纵向-横向分解的模式表示实现时间一致性,采用生成-选择架构结合专家奖励函数和不变视图模块提升训练效果。实验表明,CarPlanner在nuPlan数据集上首次超越模仿学习和基于规则的方法,验证了RL在复杂驾驶场景中的潜力。关键创新包括一致性自回归结构、通用奖励设计和状态预处理方法,为自动驾驶规划提供了新思路。
2025-06-19 18:59:52
122
原创 微电网系列之微电网关键技术和规划
《微电网关键技术与发展分析》摘要:微电网作为独立运行与并网协同的自治系统,其核心挑战在于分布式能源的电力电子装置控制,需满足功率调控、电网支撑等多重要求。文章系统阐述了微电网的三大关键技术:电力电子变流器拓扑优化与调制技术、运行模式无缝切换技术、多电源协调控制策略,并分析了规划设计中需考虑的资源配置、网络结构优化等问题。研究指出,未来发展方向将聚焦智能控制算法应用、多能互补系统构建及标准化协议制定,以应对波动性管理、保护复杂度等技术挑战。微电网的高效运行依赖于能量管理系统对分布式电源、储能设备的动态优化调度
2025-06-18 16:26:39
1023
原创 微电网系列之潮流方向
电力系统潮流分析揭示了稳态运行下的电压分布与功率流动规律。电压幅值和相角决定电能质量,有功和无功功率分别对应能量传输与电压稳定。潮流方向由电压差主导:有功取决于相角差,无功由幅值差决定。随着分布式电源接入,传统单向潮流变为双向动态流动,这对继电保护、电压控制、网损优化和谐波抑制带来全新挑战。该分析为电力系统规划运行提供了关键理论基础。
2025-06-18 10:19:03
413
原创 微电网系列之微电网控制
微电网控制方法主要包括主从控制、对等控制和分层控制三种类型。主从控制依赖特定主电源,存在可靠性差、模式切换困难等问题;对等控制采用下垂控制实现即插即用,但缺乏电压/频率恢复机制;分层控制通过三层架构(本地快速响应、中央协调补偿、经济优化调度)兼顾稳定性和经济性,成为当前主流方案。三种方法在控制结构、通信需求、可靠性等方面存在显著差异,需根据微电网规模和应用场景选择适合的控制策略。
2025-06-17 13:26:54
1416
原创 微电网系列之微电网分类定义
微电网可分为并网型和独立型两类,按结构分为交流、直流及交直流混合微电网。交流微电网兼容传统电网设备,应用最广泛;直流微电网能效高(损耗降低10-15%),适合光伏、电动汽车等直流负载;交直流混合微电网可靠性强,支持多种运行模式,但建设成本较高。三类微电网各具优势:交流微电网兼容性好,直流微电网效率突出,混合微电网灵活性高,分别适用于不同场景需求。(148字)
2025-06-16 07:15:00
909
翻译 翻译:SplatAD:用于自动驾驶的实时激光雷达和相机渲染的三维高斯点绘制技术
本文提出SplatAD技术,一种基于三维高斯点绘制的实时激光雷达与相机渲染方法,用于自动驾驶场景。文章详细介绍了激光雷达分块渲染机制(32×8分块)、多模态联合优化训练策略(30,000步Adam优化),以及动态对象处理中的卷帘快门补偿方法。该方法通过混合激光雷达点与随机点初始化高斯分布,支持500万高斯点上限,在nuScenes等数据集测试中展现出精确的强度预测和新型视图合成能力。补充材料包含实现细节、6个附录及参数配置(如λ_r=0.8等损失权重),验证了该方法在自动驾驶感知任务中的高效性和准确性。
2025-06-16 07:15:00
23
翻译 翻译:SplatAD:用于自动驾驶的实时激光雷达和相机渲染的三维高斯点阵法
“所谓坚持,就是觉得还有希望!GeorgHess†,1,2CarlLindstr¨om†,1,2MaryamFatemi1Petersson1,2LennartSvensson21Zenseact2查尔姆斯理工大学名字姓氏图1.SplatAD是首个能够使用3D高斯点阵实现逼真的相机和激光雷达渲染的方法。与以往的方法相比,要么速度快,要么多模态,而SplatAD能够实现实时、高质量的相机和激光雷达渲染。此外,
2025-06-16 07:15:00
49
1
翻译 翻译:MICROADAM:具有低空间开销和可证明收敛性的精确自适应优化算法
本文提出了一种新型自适应优化算法MICROADAM,旨在降低深度学习模型优化过程中的内存开销,同时保持理论收敛性和实际性能。该算法通过在梯度信息进入优化器状态前进行压缩,并采用新型误差反馈机制控制压缩误差,显著减少了内存占用。理论分析表明,MICROADAM在光滑非凸函数和满足PL条件的非凸函数上均具有与AMSGrad相当的收敛速度。实验验证显示,在BERT、OPT和LLaMA等模型上,MICROADAM仅需1%的梯度密度和4位误差反馈量化,就能实现与未压缩Adam相当的性能,同时优化器状态内存降低50%。
2025-06-15 16:32:02
57
4
原创 手阳明大肠经之下廉穴
下廉穴是手阳明大肠经的重要腧穴,具有调理肠胃、通经活络等功效。位置:位于前臂背面桡侧,肘横纹下4寸处,阳溪穴(腕背横纹桡侧端)与曲池穴(肘横纹外侧端)的连线上。清胃调肠:主治腹胀、腹痛、肠鸣泄泻等胃肠湿热证。疏风清热:缓解头痛、眩晕、目痛等风热上扰症状。通络安神:改善肘臂痛、上肢麻木及运动障碍。
2025-06-13 19:18:31
665
1
原创 手阳明大肠经之温溜穴
屈肘,在前臂背面桡侧,当阳溪与曲池的连线上,腕横纹上5寸处。功效:清热解毒,安神定志。现代常用于治疗急性胃肠炎、扁桃体炎、腮腺炎、咽喉炎、面神经麻痹等。配曲池等主治急性咽喉肿痛;配足三里、上巨墟主治肠鸣、腹痛。1.【郄穴】:温溜穴为手阳明大肠经之郄穴。
2025-06-11 19:23:19
642
原创 微电网系列之分布式发电定义与特性
本系列将围绕微电网技术,系统性进行描述。为有效降低波动性对可再生能源电网运行性能的影响,同时提高电网末端分布式电源的渗透率,微电网逐渐成为未来电网的重要构成环节之一。微电网系统具有多种灵活的运行模式,既可以与大电网联网运行,也可以脱离电网孤岛运行,有效地提升了电力系统的用电可靠性。而对于微电网系统内的负荷而言,微电网系统可提供电和热两种不同形式的能量,且可实现能量的定制,满足了用户的多样化需求。
2025-06-11 07:30:00
843
原创 软件工程: 软件测试方法分类和定义
本文档系统介绍了多种软件测试方法,涵盖基于需求、模型、数学、规格说明、结构和经验的测试技术。 基于需求的测试:确保测试覆盖所有需求,验证系统是否符合用户需求,适用于高优先级需求验证。 基于模型的测试:利用形式化模型自动生成测试用例,适用于复杂系统,可提高测试效率和覆盖率。 基于数学的测试:运用组合测试、随机测试等技术,减少人为偏差,适用于输入空间较大的场景。 脚本化与非脚本化测试:脚本化测试可重复且可追溯,适合高风险场景;非脚本化测试灵活高效,适合探索性测试。
2025-06-10 07:30:00
729
原创 工具开发: Python生成EXE文件
本文介绍了Python程序打包成EXE文件的完整指南,涵盖三种主流工具的使用方法。重点讲解了PyInstaller的基本打包命令和高级配置选项,包括单文件打包、图标设置、资源文件添加等实用功能。同时提供了cx_Freeze和py2exe的配置示例,以及解决常见问题的技巧,如处理缺失模块、文件路径问题和体积过大等。最后给出了最佳实践建议,包括使用虚拟环境、充分测试和UPX压缩等优化方案。适合需要将Python程序分发为独立可执行文件的开发者参考。
2025-06-09 08:00:00
348
原创 Jenkins 调用远程脚本配置方法
本文主要介绍了在CI/CD流程中利用Jenkins实现跨平台(Windows/Linux)远程脚本执行的方法。针对Linux系统,通过SSH插件配置远程节点,详细演示了Uboot编译的测试案例;对于Windows系统,采用Web代理方式连接节点,测试了远程文件生成和Simulink模型编译。文章提供了完整的配置步骤,包括凭据管理、主机添加和构建任务设置,并强调了系统差异带来的权限管理挑战。通过具体实例展示了Jenkins在自动化测试中的灵活应用,为跨平台持续集成提供了实用解决方案。
2025-06-09 07:30:00
1742
软考软件设计师考试:2025年备考指南与核心知识点解析
2025-03-29
嵌入式系统中STM32单片机开发详解:核心技术参数、外设模块及应用实例
2025-03-29
软考网络工程师(中级)备考指南:涵盖基础知识、应用技术和实战技巧
2025-03-29
软考高级信息系统项目管理师考试指南:核心知识体系、备考策略与高频考点分析
2025-03-27
数学建模大赛详解:从备战到竞赛全攻略
2025-03-23
大型语言模型(LLM)面试指南:涵盖核心技术、应用实例、训练优化与面试技巧
2025-03-23
人工智能技术演进、领域应用及学习指南
2025-03-23
机器学习发展历程、核心技术及应用场景全面解析
2025-03-23
深度学习入门:从神经网络架构到PyTorch实战图像分类
2025-03-23
深度学习框架PyTorch的体系架构与应用发展简介及其灵活性特点
2025-03-23
YOLO系列算法及其最新发展在实时目标检测领域的深入解读与应用指南
2025-03-23
跨平台应用开发框架 UniApp 的发展历程、体系架构与实战应用
2025-03-23
新能源汽车电机与减速箱匹配优化及仿真研究
2025-03-06
DeepSeek AI部署指南:本地与云端环境设置及模型应用详解
2025-03-06
软考真题解析-链表数据结构详解与应用
2025-03-11
TypeScript编程语言环境搭建与项目构建全攻略
2025-03-14
UE5-demo Project
2025-03-14
25年全国计算机等级考试资料合集
2025-03-14
RFID技术从军事到民用:发展历程、技术迭代与未来趋势
2025-03-13
阿里云上DeepSeek部署指南:GPU实例配置、API接口详解及问题解决
2025-03-06
【计算机技术】2025技术岗春招面试300题全题库:Java/C++/前端核心考点与项目实战解析
2025-06-01
【计算机视觉】YOLOv8目标检测算法详解:从基础理论到模型部署全流程实践指南
2025-06-01
【Python编程】Python与PyCharm完整安装指南及关系解析:构建高效开发环境系统教程
2025-06-01
【Python开发环境】Anaconda安装与配置教程:涵盖安装步骤、环境变量配置及问题解决
2025-06-01
新能源插电式混动Simulink仿真模型,经济型、动力性等 动力总成构型:4-DHT,P1+P3电机
2025-04-16
【C语言数据结构】C语言中常见数据结构详解:数组、链表、栈、队列、树、图、哈希表、堆、集合与字典的定义、实现及应用场景
2025-04-12
2025年计算机专业毕业设计全流程指南:从智能选题到元宇宙答辩的技术与实施
2025-03-29
混动DHT P1-P3 Simulink仿真
2025-03-29
计算机专业C/C++笔试重点难点解析:核心知识点与应试技巧
2025-03-29
计算机二级考试C语言知识点全面解析
2025-03-29
C++一级认证必备:计算机基础知识与真题解析
2025-03-29
蓝桥杯算法竞赛全维度指导手册:赛事解析、备赛策略及职业发展路径
2025-03-29
电子硬件专业客户层设计解析-从需求到产品的全面指南
2025-03-29
计算机行业求职指南:从自我评估到面试技巧全面提升
2025-03-29
NET平台蓝牙wifi计步器
2025-03-29
Linux操作系统概述及其常用命令详解
2025-03-29
简易FTP服务器端的设计与实现和简易FTP客户端的设计与实现
2025-03-29
校园拾物失物招领app
2025-03-29
如何实施软件FMEA
2024-06-11
TA创建的收藏夹 TA关注的收藏夹
TA关注的人