pandas中的loc和iloc

loc和iloc的比较

.loc.iloc 是 pandas 提供的两种不同的索引方法,它们的主要区别在于索引数据的依据:

  1. .loc
    • 基于标签的索引,使用 DataFrame 或 Series 的索引标签(即行名和列名)来获取数据。
    • 可以使用单个标签、标签列表、标签切片、布尔数组或者 callable 函数作为索引器。
    • 如果使用标签索引并且标签不存在,.loc 会抛出一个 KeyError
    • 对于切片,包括两端的标签。
  2. .iloc
    • 基于位置的索引,使用 DataFrame 或 Series 的整数索引位置来获取数据。
    • 可以使用单个整数、整数列表、整数切片、布尔数组或者 callable 函数作为索引器。
    • 如果使用整数索引并且位置超出范围,.iloc 会抛出一个 IndexError,但切片索引器允许超出范围的索引。
    • 对于切片,不包括结束位置的索引,这与 Python 的列表切片行为一致。
      简而言之,.loc 用于根据数据的实际标签(名称)进行索引,而 .iloc 用于根据数据的实际位置(整数索引)进行索引。选择哪一种方法取决于您是否知道数据的标签,或者是否需要按照数据的实际位置进行操作。

示例

下面为 .loc.iloc 提供一个例子,以说明它们在 DataFrame 中的使用。

.loc 示例

假设我们有一个 DataFrame,其中包含了某些水果的库存信息,包括它们的种类和数量。DataFrame 的索引是水果的名称,列是 ‘库存数量’。

import pandas as pd
# 创建一个示例 DataFrame
data = {
   <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白日与明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值