【算法概论习题解答】8.8证明精确的4SAT是NP-完全问题

本文探讨了精确4SAT问题的NP-完全性。首先证明其属于NP类,随后通过从3SAT问题的有效归约进行证明。通过在3SAT的基础上添加辅助变量,构造出满足精确4SAT条件的问题实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:在精确的4SAT(EXACT 4SAT)问题中,输入为一组子句,每个子句都是恰好4个文字的析取,且每个变量最多在每个子句中出现一次。目标是求它的满足赋值(如果该赋值存在)。证明精确的4SAT问题是NP-完全问题。

解答:首先证明EXACT 4SAT 属于 NP,然后再通过将 3SAT 归约到 EXACT 4SAT 来证明后者的 NP 完全性。

    EXACT 4SAT同SAT问题类似,显然给出一个解都可以在多项式时间内验证,所以EXACT 4SAT问题是NP的。

    对于任意一个 3SAT 实例(a1V a2V a3)(a4 V a5 V a6)...(...V ak),如果其中某个子句中ai出现多次,那么可以缩减为一次,如果同时包含了ai和~ai,那么可以将ai和~ai去掉。然后,可以再在每个子句中可以添加一些辅助变量如:(a1V a2V a3Vy1)(~y1Va4 V a5 V a6)...(...~ynV ak),使每个子句所包含的文字数目扩充到四个。至此,即已将该3SAT 问题归约为一个 EXACT 4SAT 问题。 因为3SAT问题是NP-完全问题,所以EXACT 4SAT问题也是NP-完全问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值