无穷级数的理解

要了解无穷级数,建议我先把之前的内容比较生动地阐述一下。前面在函数的极限部分大家已经有所了解了,而“极限的语言”这样的本质上就是一个自变量和因变量的无限逼近。我们发现所谓的极限就是一个比较抽象但是又是可以定量计算的问题。先来谈谈泰勒微分:如果你不是数学专业人士,你可以继续看下去,我建议你这样理解:只知道一个函数在x0处的值f(x0),可以用泰勒公式较为精确地预测函数f(x)的表达式。具体如下:初看泰勒公式很复杂,先不谈泰勒公式如何证明,只看泰勒公式里面的内容:存在有f(x0),f’(x0),f’’(x0)…为什么要涉及到高阶导数?一阶导数我们理解,可以看作某一点的切线斜率。那我看泰勒公式第二项:f’(x0)(x-x0),且看这个公式像什么。这就好像在x0处的切线斜率和x对x0逼近程度的一个乘积,我且称之为“对函数在x0之后或者之前的走向的一个预测”。我通过一阶导数来预测函数的走向形式。那么之后的项目,我们都把每一项当成是一个对函数的一个预测。如果一项预测不准确,所以泰勒公式提供了无穷多项。通过这种理解,我们可以大概的理解泰勒公式的真正含义。在老师授课时候还是考试要求各方面,我们大概只被告知只需要记住几个经典函数的泰勒展开式即可,这是对我刚所属的泰勒展开式的逆向应用:把函数在已知的某点展开。展示它的“预测趋势”。如果你不是特别钻研数学,那么你可以理解:泰勒展开的那个和式,可以认为是泰勒级数。只说一句,非常通俗,如果你不是特别数学专业的人,你可以记住这句话:级数可以表示出一切函数。那么好了,此时我们看看更多的级数:幂级数、泰勒级数、洛朗级数等等等等,我们发现他们都是某个函数的展开,展开式不相同。我认为你可以这样理解:不同名的级数的区别就在于对函数预测的方法有区别。仅此而已。无穷级数中特别描述了幂级数,在课上大概同泰勒公式一样,被要求记住某些经典展开式。我这个回答仅仅用于各位理解级数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值