【机器学习】均方误差(MSE)和均方根误差(RMSE)和平均绝对误差(MAE)

本文介绍了机器学习中常用的误差评估指标:均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)。MSE衡量数据变化程度,值越小表示模型精度越高;RMSE是MSE的平方根;MAE则更直接地反映了预测值与真实值的误差情况,对于实际应用更具参考价值。同时提到了标准差(SD)作为数据集离散程度的指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MSE: Mean Squared Error 
均方误差是指参数估计值与参数真值之差平方的期望值; 
MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。

 

 

RMSE 
均方误差:均方根误差是均方误差的算术平方根

 

 

MAE :Mean Absolute Error 
平均绝对误

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SoWhat1412

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值