datax同步数据翻倍,.hive-staging 导致的问题分析

文章探讨了Hive的.hive-staging文件导致Datax从Hive表同步到Mysql数据翻倍的问题,分析了其产生原因、不自动删除的机制以及可能带来的问题。提出了修改Hive配置、避免使用Hue和定期清理临时文件的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

有同事反馈 Datax 从 Hive 表同步数据到 Mysql 数据翻倍了。通过查看 Datax 任务日志发现,翻倍的原因是多读取了 .hive-staging_xx 开头的文件。接下里就是有关 .hive-staging 的分析。

二、环境

Hive 版本 2.1.1

三、分析

3.1 .hive-staging_hive 产生的原因

通过 Spark SQL、Hive SQL、Hue 等提交 SELECT 或者 INSERT OVERWRITE 等 SQL 到 Hive 时,会产生该目录,用于临时存放执行结果,比如 INSERT OVERWRITE 会将结果暂存到该目录下,待任务结束,将结果复制或移动到 Hive 表中。
对应的的参数:
hive.exec.stagingdir

  • Default Value: .hive-staging
  • Added in: Hive 1.1.0 with HIVE-8750

Directory name that will be created inside table locations in order to support HDFS encryption. This is replaces hive.exec.scratchdir for query results with the exception of read-only tables. In all cases hive.exec.scratchdir is still used for other temporary files, such as job plans.
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-QueryandDDLExecution
对应的源码:
https://github.com/apache/hive/blob/branch-2.1/ql/src/java/org/apache/hadoop/hive/ql/metadata/Hive.java
查看 moveFile() 方法
从源码可以看到,有下面几种情况
① 源文件是本地系统的文件,使用 copyFromLocalFile 代码行数: 2925~2934
② 如果是跨系统或者不同加密的数据,会使用 copy ,涉及方法 needToCopy ,代码行数:3018~3032
③ 其他情况都是 move,涉及操作 namenode 元数据,不会有额外数据操作。 (注意:这里和 Hive 1.x 不一样,在 Hive 1.x 中如果原目录是目标目录的子目录,原目录下的每个文件进行copy操作,这个效率很低的!!!,可以查看 1.x 的原码:戳我)

3.2 为什么临时文件没有自动删除?

① 任务执行失败时,这些临时文件和目录不会被自动删除掉,直到有相关的 SQL 执行成功时,才会自动删掉。
② 我们发现,在 Hue 中提交的 SQL,临时文件和目录页也不会自动被删掉。也许和长连接有关系,我尝试了多次,必现。

3.3 .hive-staging_hive 会导致的一些问题:

① 如果目标路径存在临时文件的话,datax 读取hdfs数据的时候会递归读取,所有 .hive-staging_hive 临时文件的数据也会被 datax 读到,导致数据至少翻倍。
② 有的 .hive-staging_hive 可能会包含很多的临时文件,占用空间,同时也会造成 namenode 的压力;

四、如何解决?

从 Datax 的角度分析,修改 HDFS Reader 插件,过滤点开头的文件或目录。
从集群的角度分析,修改 hive.exec.stagingdir 配置,修改成统一的目录。

hive.exec.stagingdir
/tmp/hive/.hive-staging

从用户的角度分析,不要使用 Hue 补数,使用调度系统或者 beeline 执行 SQL,这两种方式都可以保证会话(连接)断开,临时文件(目录)会自动清理。

从社区的角度分析,查看社区的 issue ,有其他用户遇到了这个问题: Hive is not cleaning up staging directories 也可以看出,除了上述分析的原因,也可能有一些奇奇怪怪的bug导致临时文件不会被清理。
看到两个修复:
https://issues.apache.org/jira/browse/HIVE-17479 3.0 版本
When these queries are internally rewritten, a new context is created with a new execution id. This id is used to create the scratch directories. However, only the original context is cleared, and thus the directories created with the original execution id.
The solution is to pass the execution id to the new context when the queries are internally rewritten.
https://issues.apache.org/jira/browse/HIVE-20409 4.0版本

五、总结

hive-staging文件不会自动删除,有些未知的情况还无法避免。

  • 会浪费存储
  • 会影响datax同步数据,datax hdfs reader 也会把临时目录的数据同步到下游。

我认为最优的解决方案是,临时文件改成统一的目录,这样即使有临时文件没有自动删除,我们也可以进行周期性的监控并清理没有及时清理的过期的临时文件。

hive.exec.stagingdir
/tmp/hive/.hive-staging

另一种方案,不要使用hue刷数据,使用调度或beeline执行SQL,大概率(不排除是不是有其他bug)不会出现临时文件不会自动清理的情况。

大数据学习指南 专注于大数据技术分享与交流。

在这里插入图片描述

<think>好的,用户现在问的是数仓中的DIM层如何同步到数仓中。首先,我需要回顾一下之前讨论的内容,之前用户询问了数仓分层的好处,现在则是具体到DIM层的同步方法。DIM层即维度层,主要用于存储维度数据,比如用户、商品、时间等维度信息。 用户可能的背景是数据工程师或者相关岗位,需要了解维度数据同步的具体方法。他们可能在实际工作中遇到了如何高效、准确地将维度数据从源系统同步到数仓的问题。因此,用户的需求不仅仅是知道步骤,还包括不同方法的优缺、适用场景以及注意事项。 接下来,我需要考虑DIM层同步的常见方法。通常包括全量同步、增量同步、CDC(变更数据捕获)、双写机制等。每种方法都有其适用的情况,比如全量适用于数据量小或变化频繁的情况,增量适用于数据量大但变化少的情况,CDC适用于需要实时同步的场景,双写则可能用于新旧系统过渡时期。 另外,用户可能关心如何保证数据一致性、处理缓慢变化维(SCD)的问题,比如类型1覆盖历史,类型2保留历史版本。这些都是在同步过程中需要考虑的细节。 还需要提及同步工具,比如Sqoop、DataX、Flink CDC等,以及调度系统的配合,比如Airflow或DolphinScheduler,确保同步任务的自动化执行。同时,数据质量监控也是不可忽视的部分,比如校验数据量、主键唯一性、数据一致性等。 用户可能还希望了解实际的应用场景,例如在电商系统中如何同步用户维度数据,结合具体案例来说明不同同步方法的选择和操作步骤。 在回答时,需要结构清晰,分步骤说明每种同步方法,对比优缺,给出实际例子,并强调注意事项,如数据一致性、性能优化、历史数据处理等。这样用户能够根据自身情况选择最合适的同步策略,并了解实施过程中可能遇到的问题及解决方法。</think>数据仓库中的DIM层(维度层)同步是构建一致性维度模型的关键环节,主要通过**维度数据从业务系统到数仓的标准化映射与更新**实现。以下是DIM层同步的核心方法、技术选型与典型实现流程: --- ### 一、DIM层同步的3种核心模式 #### 1. **全量同步(Full Load)** - **适用场景** - 维度表数据量较小(如$dim\_date$时间维度表) - 业务系统无法提供增量变更记录 - **实现步骤** ```sql -- 示例:每日全量覆盖用户维度表 TRUNCATE TABLE dim_user; -- 清空现有数据 INSERT INTO dim_user -- 全量插入最新数据 SELECT user_id, name, gender, address, create_time FROM source_user_db.user_info; ``` - **优**:实现简单,保证数据一致性 - **缺**:资源消耗大,不适合大数据量表 #### 2. **增量同步(Incremental Load)** - **适用场景** - 维度表有明确更新时间戳字段(如`update_time`) - 业务系统支持增量查询(如MySQL的`WHERE update_time > last_sync_time`) - **实现步骤** ```sql -- 示例:按更新时间增量同步 INSERT INTO dim_user SELECT user_id, name, gender, address, create_time FROM source_user_db.user_info WHERE update_time > '2023-10-01 00:00:00'; -- 获取上次同步后的变更 ``` - **优**:资源消耗低,适合大表 - **缺**:依赖源系统时间戳准确性,可能遗漏无更新时间字段的变更 #### 3. **CDC同步(Change Data Capture)** - **适用场景** - 需要实时/准实时同步(如用户画像实时更新) - 业务系统支持Binlog或类似日志(如MySQL Binlog、Oracle Redo Log) - **技术实现** - **工具选择**:Debezium(捕获Binlog)、Flink CDC、Maxwell - **处理流程**: 1. 解析数据库日志获取增删改事件 2. 转换日志事件为维度表结构 3. 写入DIM层并处理SCD(缓慢变化维度) ```sql -- SCD Type2处理示例(保留历史版本) UPDATE dim_user SET end_date = CURRENT_DATE WHERE user_id = 'U1001' AND end_date = '9999-12-31'; INSERT INTO dim_user VALUES ('U1001', '张三', '男', '北京', '2023-01-01', CURRENT_DATE, '9999-12-31'); ``` - **优**:支持实时同步数据延迟低 - **缺**:技术复杂度高,需要处理事务一致性 --- ### 二、DIM层同步技术选型对比 | 同步方式 | 工具示例 | 延迟 | 适用场景 | 复杂度 | |------------|-----------------------|---------|----------------------------|--------| | **全量同步** | Sqoop、DataX | 天级 | 静态维度(地区、日期) | 低 | | **增量同步** | Airflow定时SQL | 小时级 | 中低频变更维度(商品类目) | 中 | | **CDC同步** | Debezium + Kafka | 秒级 | 高频变更维度(用户信息) | 高 | --- ### 三、典型实现流程(以电商用户维度表为例) #### 1. **数据抽取** - **源系统**:MySQL业务库的`user_info`表 - **字段映射**: | 源字段 | 目标维度字段 | 转换规则 | |----------------|--------------------|-------------------------| | `id` | `user_id` | 直接映射 | | `name` | `user_name` | 去除前后空格 | | `birthday` | `age` | `YEAR(NOW()) - YEAR(birthday)` | | `province` | `province_code` | 关联地区维度表$dim\_region$ | #### 2. **数据清洗** - **去重**:根据`user_id`去重,防止脏数据 ```sql SELECT user_id, MAX(update_time) AS latest_time FROM staging_user GROUP BY user_id HAVING COUNT(*) > 1; -- 检测重复数据 ``` - **空值处理**: ```sql -- 将空地址标记为未知 UPDATE dim_user SET address = '未知' WHERE address IS NULL; ``` #### 3. **SCD处理(缓慢变化维度)** - **Type1(覆盖历史)**:直接更新字段 ```sql UPDATE dim_user SET address = '上海市' WHERE user_id = 'U1001'; ``` - **Type2(保留历史)**:插入新版本并标记时间范围 ```sql -- 关闭旧记录有效期 UPDATE dim_user SET end_date = '2023-10-01' WHERE user_id = 'U1001' AND end_date = '9999-12-31'; -- 插入新记录 INSERT INTO dim_user VALUES ('U1001', '张三', ..., '2023-10-01', '9999-12-31'); ``` #### 4. **数据加载** - **批量加载**:使用`INSERT OVERWRITE`(Hive)或`TRUNCATE + INSERT`(MySQL) - **实时更新**:通过Kafka将CDC事件写入HBase或ClickHouse --- ### 四、注意事项 1. **一致性保障** - 使用事务保证抽取-转换-加载的原子性 - 在分布式系统中采用两阶段提交(2PC) 2. **性能优化** - 对大表采用分区同步(如按`create_time`按月分区) - 使用列式存储(Parquet/ORC)减少I/O压力 3. **历史数据处理** - 定期归档过期维度版本(如将$dim\_user$中`end_date < '2020-01-01'`的数据迁移到历史库) 4. **数据质量监控** - 校验数据量波动(如`COUNT(*)`日环比变化超过10%时告警) - 检查主键唯一性(`SELECT user_id, COUNT(*) FROM dim_user GROUP BY user_id HAVING COUNT(*) > 1`) --- ### 五、典型架构示例 ``` 业务系统MySQL │ ↓ Binlog Kafka(实时传输变更事件) │ ↓ Flink CDC ODS层(原始用户数据) │ ↓ ETL处理 DIM层(标准化用户维度表) │ ↓ 关联引用 DWD事实表(如$fact\_order$关联$dim\_user$) ``` 通过合理选择同步策略与SCD处理方式,DIM层可有效支撑“用户画像分析”“多维度交叉分析”等核心场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值