自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

此星光明博客

地理信息和卫星遥感云计算专业指导

  • 博客(4587)
  • 资源 (1934)
  • 收藏
  • 关注

原创 GEE案例:基于landsat 8 NDWI阈值法和机器学习方法的填海造地面积计算(珠海为例)

本文介绍了利用Google Earth Engine平台和Landsat 8卫星影像监测填海造地变化的技术方法。通过NDWI指数阈值法和机器学习分类(CART)两种方法,对2017-2024年特定区域的填海造地变化进行定量分析。技术流程包括研究区域定义、影像预处理、NDWI计算、分类器训练及结果对比。研究发现机器学习方法能更准确地识别填海区域,而NDWI阈值法则更简便易行。该方法不仅适用于填海监测,还可扩展应用于海岸线变迁、湿地退化评估等领域,为海岸带管理提供科学依据。

2025-09-01 18:30:00 1

原创 GEE训练教程:2021-2022年研究区域的日径流总量,将径流深度(毫米)转换为体积(立方米)和流量率(立方米/秒)

本文介绍利用Google Earth Engine处理NASA GLDAS数据计算日地表径流的方法。通过加载GLDAS-2.1 NOAH模型3小时间隔数据,计算2021-2022年研究区域的日径流总量,将径流深度(毫米)转换为体积(立方米)和流量率(立方米/秒)。代码包含研究区域定义、面积计算、时间序列处理、单位转换等关键步骤,最终将结果导出为CSV文件。该方法适用于流域尺度的水文分析,为水资源管理、洪水预测等提供数据支持。

2025-09-01 09:00:00 101 1

原创 2001-2024年全球Tasseled Cap 湿度 (TCW) 无空缺数据集

该数据集由疟疾地图集项目提供,包含2001-2024年间1公里分辨率的8日、月度和年度苔帽湿度(TCW)数据。数据通过填补MODIS BRDF影像缺失值生成,并经过阈值裁剪处理[-1,2]。数据集包含"Mean"波段,取值范围[-0.84,0.96],提供三种时间聚合产品代码示例。研究采用Weiss等人(2014)的缺口填充方法,有效解决了云层遮挡等导致的数据缺失问题。该数据可用于全球植被湿度监测及相关生态研究。

2025-09-01 07:00:00 252

原创 GEE训练教程:归一化差异植被指数 (NDVI)、修改的归一化差异水体指数 (MNDWI) 和自动水体提取指数 (AWEI)

本文介绍了使用Google Earth Engine计算水体指数的方法,主要包括NDVI、MNDWI和AWEI三种指数。首先加载Sentinel-2影像和Manaus区域数据,通过云量和日期筛选后计算中位数影像。然后分别计算三种水体指数:NDVI(近红外和红光波段)、MNDWI(绿光和短波红外波段)以及AWEI(多波段组合)。通过设置阈值(如MNDWI>0)生成水体掩膜,并配置可视化参数进行展示。最后将计算结果导出到Google Drive。该方法为水体监测提供了有效的技术方案,可应用于区域水资源评估

2025-08-31 16:13:27 18

原创 2020 年全球天然森林概率地图10 米分辨率

《全球天然森林2020》数据集提供了10米分辨率的全球天然森林概率地图,支持欧盟《森林砍伐法规》等保护工作。该数据通过多模态时空视觉Transformer模型分析Sentinel-2卫星影像和地形数据生成,可区分天然林与人工林等类型。但存在农林复合系统识别困难、人工林与天然再生林区分度不足等限制。数据集包含3种土地覆盖分类,用户可通过设置概率阈值生成二值化森林图。该成果由Nature Trace团队开发,相关论文正在审核中。

2025-08-31 15:00:00 334

原创 2001-2024年全球Tasseled Cap 亮度 (TCB) 无空缺数据集

疟疾地图集项目提供了一套填补缺失数据的Tasseled Cap亮度(TCB)数据集,该数据集基于MODIS BRDF校正影像(MCD43B4)生成,采用缺口填充方法消除云覆盖等因素造成的数据缺失。数据集包含8日、月度和年度三种时间分辨率产品,空间分辨率5公里,波段值范围0-1.99。项目提供了三种时间尺度的可视化代码示例,并采用9色渐变调色板展示全球TCB分布。该数据集主要应用于大尺度遥感时间序列分析,相关方法发表在ISPRS期刊上(Weiss等,2014)。

2025-08-31 09:00:00 136

原创 英格兰农业景观半自然特征(树篱、林地和石墙)高分辨率 (25 厘米) 概率地图

Farmscapes 2020数据集提供了英格兰农业景观中树篱、林地和石墙三种半自然特征的高分辨率(25厘米)概率地图。该数据集由牛津Leverhulme自然恢复中心合作开发,基于视觉Transformer模型处理航空影像生成,包含三个概率层,用户可自定义阈值生成二元特征图。数据集适用于景观恢复、生物多样性监测等用途,但存在地理范围限制、时间准确性和类别不平衡等问题。另提供实验性欧洲版本数据集,可通过指定表单申请访问。

2025-08-31 08:30:00 294

原创 GEE python高阶——如何使用geemap和eemont包基于Landsat 8的长时间序列的GNDVI和EVI的时序分布(最大值、最小值和平均值)

Landsat 8是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合推出的一颗遥感卫星,该卫星搭载了一台称为Operational Land Imager (OLI)的传感器,可以获取高分辨率的地球表面图像。GNDVI(Green Normalized Difference Vegetation Index)和EVI(Enhanced Vegetation Index)是两个常用于评估植被生长状况的指数,在长时间序列分析中具有重要意义。

2025-08-31 07:00:00 27

原创 GEE训练教程:基于多年Sentinel-1洪水监测分析和可视化

本文介绍了一种基于Sentinel-1 SAR数据和Google Earth Engine平台的洪水监测方法。该方法利用SAR数据全天候观测优势,通过精炼Lee滤波降噪处理和变化检测技术,实现高效准确的洪水淹没范围提取。技术流程包括数据筛选、预处理、水体识别(VH极化通道阈值<-20dB)和变化检测分析,可自动化计算淹没面积并可视化结果。该方法具有处理高效、成本低廉、近实时监测等优势,为洪水灾害评估、城市规划及气候变化研究提供了可靠的技术支持。

2025-08-30 11:12:31 23 1

原创 2000-2024年全球地表温度LST(白天/夜间)无空缺数据(8天/逐月/逐年)

摘要: 疟疾地图集项目(Malaria Atlas Project)提供了2001-2024年全球陆地表面温度(LST)数据集,包括白天和夜间数据。基于MODIS MOD11A2 v6.1产品,采用Weiss等人(2014)的缺口填充方法处理云覆盖等造成的数据缺失,并将8天合成数据转换为摄氏度后生成1km分辨率产品。数据经时间聚合形成月度/年度产品,温度范围限制在[-100,100]°C。数据集包含6种时间分辨率(8天/月/年×昼夜),可通过JavaScript代码调用,并采用特定色阶进行可视化。该数据对研

2025-08-30 09:30:00 587

原创 探索美国生态:NEON(冠层高度模型、DEM、RGB、高光谱地表反射率)1m数据集

摘要:美国国家生态观测网络(NEON)提供多源遥感数据产品,包括:1)1米分辨率的冠层高度模型(CHM),通过LiDAR点云生成;2)数字高程模型(DEM),包含地表(DSM)和地形(DTM)数据;3)0.1米分辨率RGB正射影像;4)高光谱反射率数据,包含426个波段(380-2510nm)。这些1米分辨率的数据产品覆盖美国及波多黎各81个观测点,支持生态监测与研究。所有数据均可通过NEON数据门户获取,部分已集成至Google Earth Engine平台。

2025-08-30 09:00:00 741

原创 GEE训练教程:2000年至2024年间海南岛区域的热浪归一化指数(HNI)

本文介绍了利用Google Earth Engine平台计算2000-2024年海南岛热浪归一化指数(HNI)的方法。研究基于MODIS地表温度数据,通过温度阈值法识别热浪日,将热浪日数归一化为0-1范围的HNI指数。结果显示海南岛北部和西部为HNI高值区。该指数可用于识别热浪高风险区域、评估气候变化影响及支持城市规划决策。研究提供了完整代码实现,包括数据预处理、热浪日识别和HNI计算等关键步骤,并建议根据实际气候条件调整热浪阈值。

2025-08-30 00:21:55 17

原创 CERES 云层和辐射带水 FM3 MODIS 版本 2C

CER_CRS_Aqua-FM3-MODIS_Edition2c 是云与地球辐射能量系统 (CERES) 云与辐射带 (CRS) Aqua-Flight 模型 3 (FM3) 中分辨率成像光谱仪 (MODIS) Edition2C 数据产品,该产品使用 Aqua 平台上的 CERES-FM3 仪器收集。该产品的数据收集已完成。

2025-08-30 00:17:09 858

原创 GEE python:基于sentinel-2的NDVI指数的森林物候参数计算分析和可视化(SOS\EOS\LOS)

本文介绍了利用Google Earth Engine和Python进行遥感物候分析的方法,通过HLS卫星数据计算NDVI时间序列,提取生长季开始/结束日和长度等关键参数。技术栈包括GEE、geemap、xarray和xee库,实现流程涵盖数据获取、云掩膜处理、NDVI计算、时间序列平滑和物候参数提取。该方法可用于农业监测、生态环境研究等领域,但需注意数据质量、分辨率选择和阈值设置等问题。文章提供了完整的代码示例和结果可视化方案。

2025-08-29 20:00:00 129

原创 全球EVI无空缺数据集:增强型植被指数(每 8 天 /逐月/逐年)数据集

《基于MCD43B4的疟疾地图项目增强型植被指数数据集》提供了2001-2024年全球1km分辨率的EVI数据。该数据集采用Weiss等人(2014)提出的缺口填充方法处理MODIS BRDF校正影像,消除了云覆盖等造成的数据缺失,并将值限定在[0,1]范围内。提供8天、月度和年度三种时间聚合产品,通过JavaScript代码可实现数据调用和可视化。该数据集可用于监测全球植被动态变化,特别适用于疟疾传播风险研究。数据引用建议参考Weiss等人在ISPRS期刊发表的相关论文。

2025-08-29 10:00:00 520

原创 GEE错误:FeatureCollection.remap()方法的一个文档与实际行为不符的问题

本文报告了Google Earth Engine中FeatureCollection.remap()方法的一个文档与实际行为不符的问题。测试表明,虽然API文档说明该方法支持字符串和整数两种类型的重映射,但实际使用字符串时会抛出类型错误(要求List<Integer>但传入List<String>)。作者提供了将字符串转换为整数后再进行重映射的变通方案,并建议官方要么修复实现以支持字符串,要么更新文档以反映仅支持整数的限制。该案例展示了API文档与实现不一致的情况,对开发者具有实际参

2025-08-29 09:00:00 400 1

原创 GEE图表:山西植被2000-2025年NDVI动态变化图谱

摘要:本文使用Google Earth Engine平台处理MODIS植被指数数据,分析中国山西省某地区的植被变化。代码通过加载2000-2025年数据,应用云雪掩膜和NDVI值缩放等预处理步骤,最终生成NDVI年积日时间序列图表,用于研究植被生长的季节性变化。该可视化方法能有效展示区域植被动态变化趋势。

2025-08-28 09:00:00 310

原创 GEE 案例:利用OpenLandMap土壤质地和降水计算地表径流并对比降水和径流的逐日数据(以2024年辽宁朝阳市为例)

计算径流量是通过将降水量与土壤质地的水分入渗能力相结合来确定的。水分入渗能力受土壤质地、土壤饱和度、施加的水压力等因素的影响。以下是一种常用的方法来计算径流量:1. 了解土壤质地:土壤质地是指土壤中不同粒径的比例。常见的土壤质地包括沙、粉砂、壤土、粘土等。每种土壤质地具有不同的水分入渗能力。2. 确定土壤饱和度:土壤饱和度表示土壤中已有的水分量相对于土壤容纳水分的百分比。饱和度可以根据实地观测或者模型估计得到。3. 了解降水量:降水量是指单位时间内降落在地表的水分量。

2025-08-28 07:00:00 337

原创 GEE图表:洪都拉斯NO2浓度变化趋势分析

摘要 该代码利用Google Earth Engine获取2019-2020年哥白尼S5P卫星的NO2浓度数据,分析洪都拉斯特定位置的空气质量变化。通过过滤前60天数据保证质量,生成时间序列图表展示两年数据对比(2019年红色,2020年蓝色)。图表横轴显示6-11月,纵轴为NO2浓度值,采用函数曲线平滑显示趋势变化。该可视化方法可有效监测该地区大气污染物的季节性变化特征。

2025-08-27 18:00:00 188 1

原创 GEE APP:基于ECMWF/ERA5/MONTHLY 数据的降水和气温的可视化图表以及趋势分析(直方图和折线图)

摘要 AOI气候处理器是一个基于ECMWF/ERA5月度数据集的气候分析工具,主要功能包括: 数据处理:自动加载ERA5数据并进行单位转换(降水转毫米,温度转摄氏度) 气候分析:计算月度气候学(均值/中位数)和年度时间序列 可视化输出:生成交互式图表和地图界面,展示降水与温度变化趋势 数据导出:支持将月度气候栅格数据导出至Google云端硬盘 系统提供高度可定制性,用户可设置研究区域、时间范围及统计方法等参数。输出包含12个月的独立气候图像和带趋势分析的年度时间序列图,适用于区域气候长期变化研究。

2025-08-27 09:30:00 305

原创 WorldPop全球人口数据(2015-2030):高精度网格化人口分布新标杆(100米分辨率)

WorldPop发布2015-2030年全球网格化人口数据集,采用创新机器学习技术提供100米分辨率的人口分布数据。该数据集整合最新人口普查和地理空间协变量,通过随机森林分层建模方法将行政单元人口精准分配至网格单元。包含约束模型(限于定居区域)和非约束模型(覆盖所有陆地),具有年度时间序列、年龄性别分组等特点。数据可通过HDX平台或Google Earth Engine获取,适用于人口分布研究、城市规划等应用。配套开发的GEE可视化平台支持全球主要城市的人口密度分析,提供交互式探索功能。

2025-08-27 09:00:00 25

原创 GEE高阶案例——ee.App进行应用程序的管理可以查看程序创建者和获取相应的源代码

简介让我们来定义一个感兴趣的地球引擎应用程序: 光谱相遇(哨兵-2)!

2025-08-27 07:00:00 266

原创 GEE APP:用于监测罗坎希尔县(Riau)的森林和土地火灾的应用

GeoFlare是一款基于Google Earth Engine的森林火灾监测应用,专为印尼罗坎希尔县设计。该应用整合Sentinel-2卫星影像、FIRMS火点数据及NDVI/NBR等植被指数,采用随机森林算法进行火灾区域分类。用户可通过交互界面选择年份、查看不同图层,系统会显示分类结果及评估指标(包括总体准确率、Kappa系数等)。应用支持2019-2023年历史数据分析,并提供详细的术语解释和使用教程,帮助用户理解卫星遥感技术和机器学习方法在火灾监测中的应用。

2025-08-26 09:30:00 111 1

原创 GEE训练教程:进行指定区域的DEM可视化并下载

本文介绍了使用Google Earth Engine处理SRTM DEM数据的完整流程。首先定义感兴趣区域(ROI)并加载30米分辨率的SRTM数据,然后通过裁剪操作聚焦分析区域。设置可视化参数后,将DEM数据和边界图层添加到地图中展示。最后演示了如何将处理后的数据导出到Google Drive,包含导出参数设置和坐标系统配置。整个过程展示了GEE平台处理地形数据的高效方法,为地理空间分析提供了实用技术路线。

2025-08-25 22:09:11 119

原创 来自 CLAMS 2001 活动的机载多角度成像光谱仪 (AirMISR) 数据

AIRMISR_CLAMS_2001 数据是在 2001 年 7 月 12 日、7 月 17 日、8 月 1 日和 8 月 2 日的 CLAMS 活动期间获取的。该数据由位于加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 提供。切萨皮克灯塔和卫星飞机测量 (CLAMS) 实地活动于 2001 年夏季在切萨皮克湾的 CERES 海洋验证实验 (COVE) 站举行,该实验站位于弗吉尼亚海滩以东 20 公里处。

2025-08-25 22:04:33 992

原创 GEE错误:为什么使用1m分辨率的DEM(3DEP/1m)进行slope坡度分析的过程中无法运算?

摘要 本文解决了使用1米分辨率USGS 3DEP DEM数据生成坡度图时出现的问题。原始代码因未正确设置投影坐标系导致坡度计算失败。通过将DEM数据重新投影到EPSG:4326坐标系并设置1米分辨率(scale:1),成功生成了正确的坡度图。修正后的代码展示了如何正确处理高分辨率DEM数据以获得准确的地形分析结果。

2025-08-25 13:30:00 401

原创 GEE数据集:三维高程计划(3D Elevation Program,3DEP)中像素尺寸为 1m/10m

美国地质调查局(USGS)提供的1米分辨率3DEP数字高程模型(DEM)数据集,采用激光雷达技术生成,覆盖美国大陆,采用UTM坐标系和NAD83基准,高程值以米为单位参照NAVD88基准。该数据代表裸露地形,各项目间可能存在高程差异,适用于高精度地理研究和制图。配套代码示例展示了如何通过Earth Engine调用和可视化该数据集。

2025-08-25 09:00:00 394 1

原创 微软行星云计算:通过Planetary Computer STAC API 访问 Landsat Collection 2 Level-1 和 Level-2 数据

Landsat Collection 2包含Level-1和Level-2两个级别的卫星数据产品,覆盖1972年至现今的全球遥感影像。Level-1数据提供原始校准数字值,可转换为大气顶层反射率/辐射度或亮温;Level-2产品经过大气校正,提供地表反射率和温度数据。数据由NASA和USGS联合生产,以云优化GeoTIFF格式存储,包含多光谱、热红外等多个波段(如TM、ETM+、OLI/TIRS传感器),涵盖可见光至长波红外谱段。该数据集为公共领域资源,支持广泛的遥感应用,包括环境监测和土地利用分析。

2025-08-25 07:00:00 606

原创 GEE训练教程:整合Hansen全球森林变化数据和RADD雷达警报数据,用于分析指定区域内的森林砍伐趋势

森林砍伐监测分析脚本摘要 本GEE脚本整合Hansen全球森林变化数据(30m)和RADD雷达警报(10m)两种数据源,用于监测东库泰地区2020-2024年的森林砍伐情况。主要功能包括:1)提取并处理两套数据集;2)生成二值化砍伐掩膜;3)计算各数据集及综合结果的砍伐面积(公顷);4)可视化展示砍伐分布。脚本采用多源数据融合技术,通过光学与雷达数据的互补提高监测准确性,支持自定义时空范围调整,适用于森林资源动态监测、非法砍伐识别等应用场景。技术亮点包括分辨率差异化处理、时间序列分析和优化可视化效果。

2025-08-24 20:18:36 25

原创 BARC 2001 活动的机载多角度成像光谱仪 (AirMISR) 数据

AirMISR BARC 2001 数据是在 2001 年 7 月 21 日飞越贝尔茨维尔农业研究中心 (BARC) 时获得的。加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 提供了该数据。机载多角度成像光谱仪 (AirMISR) 是一种机载仪器,用于获取与星载多角度成像光谱仪 (MISR) 类似的多角度图像,旨在为地球生态和气候研究做出贡献。AirMISR 搭载在 NASA ER-2 飞机上。加利福尼亚州帕萨迪纳的喷气推进实验室为 NASA 制造了该仪器。

2025-08-24 20:13:11 552

原创 突破地理空间AI瓶颈:AlphaEarth Foundations如何用稀疏标签实现高精度全球制图

AlphaEarth Foundations(AEF)突破性地解决了地理空间AI面临的数据洪流与标签稀缺矛盾。通过构建时空连续的64维嵌入场,AEF仅需64字节就能表征地表属性,在10米分辨率下将15项地理空间任务的误差平均降低23.9%。其核心创新包括时空感知嵌入场模型、多分辨率并行STP编码器,以及融合对比学习与文本对齐的三重训练机制。评估显示,AEF在39类树种分类等任务中显著优于现有方法,且支持零样本迁移。该技术已生成2017-2024年全球10米分辨率嵌入场,通过Google Earth Engi

2025-08-24 15:00:00 847

原创 GEE AI :利用Satelite Embedding数据进行地表相似性分析和可视化

摘要 本文介绍了一种基于卫星图像嵌入向量的地表相似度分析方法。方法通过Google卫星嵌入数据集,提取64维特征向量,计算样本点与目标区域的余弦相似度,生成热图并创建二值掩膜。主要步骤包括:1)定义分析区域和样本点;2)加载指定年份的卫星嵌入数据;3)在样本点提取嵌入向量;4)计算与全区域的余弦相似度;5)通过阈值处理生成二值掩膜识别相似地表类型。系统支持调整年份、块大小、相似度阈值等参数,并可进行结果可视化与导出。该方法适用于快速识别特定地表特征的空间分布模式。

2025-08-24 09:00:00 966

原创 GEE APP基于卫星影像嵌入卫星数据的相似性(变化检测)交互式工具——以武汉市东湖水域提取为例

摘要 本文介绍了一款基于Google Earth Engine的卫星影像相似性搜索工具。该工具利用Google Satellite Embeddings V1数据集,通过64维特征向量和余弦相似度算法,能够快速识别与用户样本点相似的地表区域。主要功能包括交互式绘图、多时间维度分析(2017-2025)、相似度热图生成和结果导出。文章详细介绍了工具的操作流程、技术原理和性能优化建议,并提供了常见问题解答。该工具适用于地表变化监测、地物提取、生态研究和城市规划等多种

2025-08-24 08:00:00 27

原创 微软行星云计算:微软研究院城市创新小组领导的低成本空气质量监测网络数据集

项目Eclipse网络是一个低成本的城市空气质量监测网络,由微软研究院城市创新小组领导的研究项目。目前在美国伊利诺伊州芝加哥市部署了超过100个监测点。

2025-08-24 07:00:00 1161

原创 GEE APP:Sentinel-2多时相光谱指数(NBR\NDVI\NDWI\SAVI等)可视化分析

摘要 本代码实现了基于Google Earth Engine的Sentinel-2遥感影像分析系统,主要功能包括: 研究区域和时间范围定义(美国德州休斯顿区域,2017-2025年) 数据加载与预处理:加载Sentinel-2地表反射率数据,应用云掩膜和数据重缩放 多指数计算:支持7种遥感指数(NDVI、NDWI、MNDWI、NDBI、SAVI、EVI、NBR) 交互式可视化:提供指数选择和日期选择界面,显示选定指数的时间序列图表 数据导出:可将结果导出到Google Drive 系统采用模块化设计,包含数

2025-08-23 14:30:00 35 1

原创 GEE Python:基于NOAA降水数据的主成分分析(PCA)与经验正交函数(EOF)的空间莫泰分析

本文详细介绍了基于Google Earth Engine (GEE)的数据处理与分析流程。首先通过Python API导入必要的库并初始化GEE环境,包括身份验证和项目设置。然后定义了西班牙作为研究区域,并创建交互式地图进行可视化。接着加载了2001-2010年的NOAA降水数据,将其转换为xarray格式数据集。文章重点演示了时空分析方法,包括计算时间平均降水和执行主成分分析(PCA/EOF)以识别主要降水模式。关键步骤涉及数据筛选、格式转换、统计分析及结果可视化,展示了GEE在环境数据处理中的完整应用流

2025-08-23 09:00:00 24

原创 行星云计算:使用行星计算机 STAC API 访问影响观测站的生物多样性完整性数据

全球生物多样性完整性数据集(2017-2020年)由Impact Observatory和Vizzuality合作开发,提供100米分辨率的陆地生物多样性评估。该数据集基于PREDICTS数据库,结合人类压力因素建模,计算生物多样性丰度和物种组成相似性两个关键指标,并通过STAC API提供访问。案例展示了如何使用Python工具链查询和可视化巴西特定区域的数据,为科学家和政策制定者提供及时、高精度的生物多样性监测工具。数据集采用CC BY 4.0许可,托管在微软行星计算机平台上。

2025-08-23 07:00:00 727

原创 GEE训练教程:基于Sentinel-5P 数据集来监测二氧化硫(SO2)的浓度的时序分析

这篇博客介绍了如何利用Google Earth Engine和Sentinel-5P卫星数据监测二氧化硫(SO2)浓度。主要内容包括:1)定义感兴趣区域;2)加载并过滤Sentinel-5P的SO2数据集;3)计算区域平均SO2浓度;4)设置可视化参数展示SO2空间分布;5)创建时间序列图表分析SO2浓度随时间变化;6)添加图例帮助解读数据。通过完整的代码示例,演示了从数据获取到可视化的完整监测流程,为环境空气质量研究提供了实用工具。

2025-08-22 13:16:14 38

原创 AIRS/Aqua L1C 红外(IR)在 GES DISC 上重新采样并校正辐射 V6.7(AIRICRAD)

大气红外探测器 (AIRS) 是安装在第二个地球观测系统 (EOS) 极地轨道平台 EOS Aqua 上的一台光栅光谱仪 (R = 1200)。AIRS 与先进微波探测装置 (AMSU) 和巴西湿度探测器 (HSB) 结合,组成了一个由可见光、红外和微波传感器组成的创新型大气探测组。AIRS 红外 (IR) 1C 级数据集包含 AIRS 红外校准和地理定位辐射度,单位为 W/m2/微米/ster。该数据集由 AIRS 1B 级数据生成。L1C 数据的光谱覆盖范围为 3.74 至 15.4 毫米。

2025-08-22 13:11:17 856

原创 Google Earth Engine编程基础:编程实战指南

这篇博客介绍了使用Google Earth Engine(GEE)和JavaScript进行基础编程的指南。主要内容包括:1)创建数字、字符串和数组三种不同类型的对象;2)修复常见JavaScript代码错误;3)使用ee.Number对象的add方法进行数值运算;4)将JavaScript对象转换为Earth Engine对象;5)修复函数中的错误。文章提供了完整的代码示例,展示了如何创建对象、处理数据类型转换、使用GEE特有方法等基础操作,帮助读者掌握GEE平台的基本编程技巧。代码运行结果也一并展示,验

2025-08-22 09:00:00 271

gamma_lib.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

Image_Postprocessing.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

EMPORC.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

【遥感影像处理】基于Landsat 8的地表参数反演:地表温度与辐射平衡关键指标计算系统设计

内容概要:该文档为一段基于Google Earth Engine(GEE)平台的JavaScript代码,主要用于处理Landsat 8卫星影像数据,进行地表参数的逐层计算与分析。首先对影像集合进行筛选和反射率校正,并计算地表反照率(albedo)、归一化植被指数(NDVI)和土壤调整植被指数(SAVI)。随后基于SAVI推导叶面积指数(IAF),并进一步计算窄波段和宽波段发射率(ENB、e0),结合热红外波段反演地表温度(temp)和亮温(tempk)。在此基础上,计算长波辐射(ROL)、大气下行长波辐射(RLatm)和短波入射辐射(RSdown),最终合成地表净辐射(Rn)。所有结果通过可视化图层叠加展示,涵盖多种地表物理量的空间分布。; 适合人群:具备遥感基础知识和一定编程经验的科研人员或地理信息专业学生,熟悉GEE平台操作者更佳; 使用场景及目标:①用于地表能量平衡研究,获取区域尺度的净辐射分布;②学习遥感影像处理流程,掌握植被指数、地表温度、辐射分量等关键参数的反演方法; 阅读建议:此资源以函数化方式组织计算流程,建议结合GEE平台实际运行调试,理解每一步的物理意义与代码实现逻辑,并注意单位转换与常数设置的合理性。

2025-08-29

Solutions_CoursBasePython.ipynb

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

1a Créer et gérer des tableaux de bord à l'aide de l'AP.ipynb

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

1.Importer_et_Interpréter_les_données_GFS.ipynb

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

Importer_et_Interpréter_les_données_IMERG.ipynb

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

enhanced_steps.py

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

2_FR_Nowcast_HSAF-H60B_STEPS.ipynb

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

1_FR_Téléchargement_HSAF-H60B.ipynb

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

1.Cours_de_base_Python.ipynb

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

Old_Extraction des estimations de précipitations à partir de l'API Rainsat - FR.ipynb

GEE训练教程的基础内容,主要研究方向为气候,但是会从一开始介绍什么是GEE,什么是API,以及REST服务等,最终处理的方向是用于非洲气象和气候服务的工具

2025-08-29

【遥感与地理信息】基于Google Earth Engine的NDVI时间序列分析:作物生长季长度提取与变化监测

内容概要:本文介绍了如何利用Google Earth Engine(GEE)平台与Python库(如geemap、xarray、xee等)进行遥感数据分析,重点实现了基于HLS卫星数据的NDVI时间序列处理与分析。通过定义云、卷云和阴影掩膜,对影像进行质量筛选,并计算NDVI指数;随后将Earth Engine中的影像集合转换为xarray数据集,进行时间序列滚动中值合成与10天重采样。进一步地,通过设定动态阈值识别植被生长季的开始(SOS)、结束(EOS)和持续时间(LOS),并可视化结果。; 适合人群:具备遥感与地理信息系统基础知识,熟悉Python编程及Earth Engine平台的科研人员或技术人员;适合环境、生态、农业等领域中从事植被动态监测的研究者; 使用场景及目标:①实现长时间序列遥感数据的自动化处理与分析;②提取区域尺度植被物候信息,支持生态环境变化监测;③结合GEE与xarray进行高效时空数据分析; 阅读建议:需预先配置好GEE开发环境并完成认证,建议在Jupyter环境中运行代码,便于可视化中间结果;学习过程中应重点关注影像集合的函数映射、掩膜处理、时间序列操作及xarray与Earth Engine的集成方法。

2025-08-29

【地理信息系统】基于Google Earth Engine的地表径流计算与导出:流域24377区域日径流数据处理及流量分析系统设计

内容概要:本文介绍了一种利用Google Earth Engine(GEE)平台计算指定区域(AOI)内每日地表径流总量及其流量的方法。首先定义了研究区域,并指定了时间范围(2021年10月1日至2022年9月30日)。然后加载了GLDAS数据集,用于获取地表径流数据。通过编写自定义函数`getDailyRunoffForYear`,逐日累加每年的地表径流深度,并将这些数据裁剪到研究区域内。接着,通过计算每日平均径流深度、将其转换为体积以及最终换算成流量(立方米每秒),得到了每日径流流量。最后,将结果导出为CSV文件存储在Google Drive中,便于进一步分析和应用。; 适合人群:对水文学、地理信息系统(GIS)、遥感数据分析感兴趣的科研人员或学生,以及需要进行地表径流监测与分析的专业人士。; 使用场景及目标:① 研究特定时间段内的地表径流变化情况;② 分析不同季节或气候条件下地表径流的差异;③ 支持水资源管理决策制定,如洪水预警系统建设。; 其他说明:本案例展示了如何利用GEE平台强大的时空数据分析能力,结合具体应用场景,实现了从数据获取、处理到结果可视化的完整流程。读者可以根据自身需求调整代码参数,如更改研究区域、时间范围或数据源等,以适应不同的研究目的。

2025-08-28

【遥感影像处理】基于Landsat 8/9的NDVI与NDBI指数计算:地表植被与建筑覆盖监测系统实现

内容概要:本文是一段用于Google Earth Engine(GEE)平台的JavaScript代码,主要实现了对柬埔寨某区域(由ROI定义)的Landsat 8和9卫星影像的处理与分析。代码首先加载研究区域,筛选2013年2月1日至12月1日期间覆盖该区域的Landsat Level-2地表反射率数据集,并通过质量掩膜函数(maskL89sr)去除云、阴影和辐射饱和像元,提升影像质量。随后对影像集合求中值合成,生成清晰的区域影像。在此基础上,分别计算归一化植被指数(NDVI)和归一化建筑指数(NDBI),并使用自定义色彩方案可视化结果,最后将两种指数图像导出至Google Drive,格式为GeoTIFF,空间分辨率为30米。; 适合人群:地理信息系统(GIS)研究人员、遥感数据分析人员、环境监测相关专业的学生或技术人员,具备基础遥感知识和GEE平台使用经验者; 使用场景及目标:①用于区域植被覆盖与城市建成区的遥感监测;②支持环境变化分析、土地利用分类或城市扩张研究;③作为遥感指数计算与自动化影像处理的教学示例; 阅读建议:此代码适合在GEE平台上直接运行与调试,建议用户根据实际研究区域和时间范围修改ROI、时间参数及导出设置,并可进一步扩展为时间序列分析或多指数融合应用。

2025-08-28

【数据处理与分析】基于Pandas的流感风险等级CSV文件处理:按邮政编码统计年份及特定记录查询文档的主要内容和

内容概要:本文档展示了如何使用Python的pandas库对流感风险等级数据进行处理和分析。首先,加载名为"Influenza_Risk_Level_by_ZIP_Code.csv"的CSV文件,确保邮政编码(ZIP_Code)字段作为字符串读取。接着,将“Week_End”列转换为日期时间格式,并删除解析失败的行。然后提取“Week_End”列中的年份信息,按邮政编码分组并获取每组的唯一年份列表。最后,打印每个邮政编码对应的所有年份,并查找邮政编码为60601且年份为2025的记录; 适合人群:有一定Python编程基础,尤其是对pandas库有一定了解的数据分析师或研究人员; 使用场景及目标:①学习如何使用pandas处理CSV文件,包括数据类型的指定、日期时间格式转换等;②掌握数据清洗技巧,如处理解析错误和删除无效行;③了解如何根据特定条件筛选和展示数据; 阅读建议:在学习过程中,建议读者同步运行代码片段,理解每一步操作的具体含义,并尝试修改参数或条件来加深对pandas库的理解。

2025-08-27

【环境健康分析】基于Python与GEE的温度变化与疾病发生率关联研究:城市流行病周度数据时空相关性建模

内容概要:本文通过Python脚本实现了一个针对流感事件百分比与地表温度变化关系的时序数据分析流程。首先从CSV文件加载事件数据,并结合Google Earth Engine(GEE)获取对应时间段和地理位置的MODIS地表温度数据。随后,计算周间温度变化与事件百分比变化,筛选出温度下降且事件上升的时间段。在此基础上,进行滞后交叉相关分析(CCF),识别温度变化与事件变化之间的最优滞后周数,并通过OLS回归模型分析滞后温度变化对事件变化的影响。最后,脚本提供了可视化功能,展示时间序列趋势与交叉相关结果。; 适合人群:具备Python编程基础、熟悉pandas、statsmodels等数据分析库,且对遥感数据或时间序列分析有一定了解的数据科学家或研究人员;适合从事公共卫生、环境健康或流行病学相关研究的人员。; 使用场景及目标:①分析环境因素(如温度)对公共卫生事件(如流感)的滞后影响;②构建基于遥感数据与地面观测数据的关联模型;③识别事件波动与环境变量之间的时序关系并进行量化评估; 阅读建议:使用前需配置Earth Engine API权限,并确保CSV数据格式正确。建议根据实际研究区域调整地理坐标和时间范围,并结合领域知识解释滞后效应的合理性。

2025-08-27

地球科学基于Python和Google Earth Engine的地表温度与百分比数据的交叉相关性分析:年份分组计算滞后效应和协方差

内容概要:本文介绍了一个基于Python的脚本,旨在通过Google Earth Engine(GEE)平台获取MODIS卫星数据中的地表温度(LST),并分析其与某时间序列数据(如“percent”字段)之间的滞后关系。脚本首先读取包含周时间范围的CSV文件,提取年份并按年分组;随后定义函数从GEE中提取指定时间段的地表温度均值,并处理可能存在的空值情况;接着计算地表温度与目标变量之间的互相关和协方差,以确定两者的时间滞后效应。整个流程结合了遥感数据处理与统计分析方法,最终将每年的滞后结果保存为CSV文件。; 适合人群:具备Python编程基础、熟悉pandas和Earth Engine API操作的科研人员或数据分析师,尤其是从事环境、气候或地理信息系统(GIS)相关研究的人员;; 使用场景及目标:①用于分析遥感地表温度与地面观测或其他社会经济指标的时间滞后关系;②支持环境变化、城市热岛效应或流行病学等领域的相关性建模;③实现自动化批量处理多年周数据的时间序列匹配分析; 阅读建议:使用前需确保已配置Earth Engine开发环境,并根据实际地理位置和研究需求调整坐标点与数据源。建议在调试时加入日志输出以监控数据获取状态,避免因空集合导致计算失败。

2025-08-27

数据处理基于Pandas的JSON文件分析工具:列值统计与多条件筛选功能实现

内容概要:本文提供了一个使用Python和Pandas库处理JSON文件的脚本,主要实现两个功能:一是统计指定列中唯一值及其出现次数;二是根据用户输入的多个过滤条件筛选数据记录。代码通过`pd.read_json`读取文件,利用`value_counts`获取唯一值分布,并通过构建动态查询语句实现多条件过滤,最终输出匹配记录的数量及详细数据。程序具备良好的交互性,支持命令行输入路径、列名和过滤条件,适用于对结构化JSON数据进行快速分析与筛选。; 适合人群:具备Python基础、熟悉Pandas数据处理的初、中级开发者,以及需要对JSON数据进行分析的数据工程师或科研人员; 使用场景及目标:①快速查看JSON数据中某字段的值分布情况,如日志类型、状态码等;②按指定条件组合查询符合条件的数据记录,辅助数据清洗、调试或验证数据一致性; 阅读建议:建议结合实际JSON数据文件运行代码,理解`query`方法的字符串表达式构建机制,掌握`value_counts`和字典式过滤的应用,同时可扩展支持CSV或其他格式输入以提升实用性。

2025-08-27

遥感领域中基于Landsat 8影像与机器学习的土地围垦监测分析

遥感领域中基于Landsat 8影像与机器学习的土地围垦监测分析

2025-09-01

基于S5P数据的二氧化碳、二氧化氮和一氧化碳的可视化以及时序统计

基于S5P数据的二氧化碳、二氧化氮和一氧化碳的可视化以及时序统计

2025-09-01

遥感监测基于Sentinel-5P的空气污染物分析:新加坡区域SO2、NO2和CO浓度时空分布评估系统

内容概要:本文利用Google Earth Engine平台,基于Sentinel-5P卫星数据对新加坡地区的空气污染物(SO₂、NO₂和CO)浓度进行时空分析。通过筛选2023年和2024年特定时间段的影像数据,构建中值合成图像,并应用云掩膜去除云干扰,结合区域统计方法计算不同污染物的平均浓度。同时,通过时间序列图表展示2024年5月至6月期间各污染物的日均浓度变化趋势,并进一步评估2023年与2024年空气质量的变化情况。最后,采用归一化方法对各污染物浓度进行标准化处理,综合计算出区域整体空气质量评分。; 适合人群:具备遥感数据处理基础、熟悉Google Earth Engine平台操作的环境科学或地理信息相关研究人员及高年级本科生、研究生;; 使用场景及目标:①用于城市空气质量动态监测与评估;②支持环境政策制定与污染治理效果分析;③开展长时间序列大气污染物变化趋势研究; 阅读建议:本代码适合在Google Earth Engine平台上运行实践,建议结合实际研究区域调整时间范围与地理范围,并根据本地化空气质量标准优化评级参数,增强结果的适用性与可解释性。

2025-09-01

【遥感生态评估】基于多光谱指数的沿海生境条件综合评价:NDVI与双NDWI模型在栖息地健康监测中的集成应用

基于多光谱指数的沿海生境条件综合评价:NDVI与双NDWI模型在栖息地健康监测中的集成应用,这里是使用JavaScript开发的内容

2025-09-01

【地理信息科学】基于Google Earth Engine的行政区划影像数据查询系统:多源遥感数据集成与交互式可视化分析平台设计

内容概要:本文档为一个基于Google Earth Engine(GEE)平台的地理空间数据探索工具的JavaScript代码实现,旨在通过国家与行政区划(District)级别的地理边界,查询、可视化和下载多主题遥感影像及环境数据集。系统整合了包括Landsat、Sentinel、MODIS、VIIRS、GEDI、S5P等主流卫星数据,覆盖光学与雷达影像、土地利用、植被指数、火灾、气候、地形、农业、人口与夜间灯光等多个主题。用户可通过界面选择国家、行政区、时间范围及数据集,获取影像元数据、波段信息或统计影像数量,并支持生成CSV格式的下载链接。代码采用模块化设计,包含数据集映射、UI构建、地理查询、时间过滤、元数据提取与输出等功能模块。; 适合人群:具备一定JavaScript和遥感基础知识,熟悉Google Earth Engine平台的科研人员、地理信息系统(GIS)开发者及环境数据分析人员,适合从事遥感应用开发或地理大数据分析的1-3年经验的技术人员; 使用场景及目标:①快速查询特定区域和时间段内的可用遥感数据集及其波段信息;②统计影像时间序列的数量并生成可下载的摘要文件;③构建可复用的GEE客户端工具框架,用于区域级遥感数据探索与分析; 阅读建议:此资源以实际GEE前端应用开发为核心,不仅展示数据调用逻辑,更强调用户交互设计与异常处理机制,建议结合Earth Engine API文档进行调试与扩展,重点关注数据集映射结构、UI事件绑定与异步请求处理逻辑。

2025-09-01

【遥感与气象分析】基于Google Earth Engine的降水与SAR数据处理:多时相洪涝监测系统实现

【遥感与气象分析】基于Google Earth Engine的降水与SAR数据处理:多时相洪涝监测系统实现

2025-09-01

使用卫星(Sentinel-2)影像检测珊瑚白化分析

GEE python 教程使用卫星(Sentinel-2)影像检测珊瑚白化 该项目是一个端到端的流程,利用 Google Earth Engine(GEE)通过 Sentinel-2 卫星影像检测和绘制潜在的珊瑚白化事件。目标是提供一种可扩展且经济高效的珊瑚礁监测方法,并识别有白化风险的区域。该项目专注于澳大利亚大堡礁附近蛇岛的一个特定区域。图像的时间范围设定为 2020 年 2 月至 6 月,与该地区的暖季相吻合。K-Means 聚类 - 工程化特征被用作无监督 K-Means 聚类模型的输入。该模型将像素分类到不同的簇中。簇分析 - 对簇进行分析和可视化,以识别对应于"类白化"、"健康"和其他类别的簇。

2025-08-30

【遥感图像处理】基于Google Earth Engine的多光谱与雷达影像分析:农作物区域分割与特征提取系统实现

内容概要:该文档为一个地理空间作物分析自动化处理流程的Python主程序脚本,涵盖从配置加载、数据下载、影像处理到特征提取的完整流程。系统支持多阶段执行模式,包括展示配置、测试环境设置、遥感数据下载(光学与雷达)、图像分割、标签生成、特征提取及临时文件清理。脚本基于Google Earth Engine(GEE)获取HLS和Sentinel-1数据,利用GDAL工具合并瓦片,并通过模块化设计实现各处理环节的灵活调用。整体架构清晰,具备日志记录、异常处理和时间统计功能,适用于区域级遥感影像分析任务。; 适合人群:具备Python编程基础、熟悉地理信息系统(GIS)数据处理及遥感技术的相关研究人员或技术人员;有GEE平台使用经验者更佳;适用于科研机构、农业监测、环境评估等领域从业者。; 使用场景及目标:①实现遥感影像自动化下载与预处理;②进行多时相影像合成与图像分割;③构建耕地或其他地物的标签数据集;④提取时空特征用于后续分类或建模分析;⑤支持全流程或分阶段执行,便于调试与集成。; 阅读建议:建议结合配置文件(config.yaml)与各功能模块(如data_download、processing等)协同理解,运行前确保GEE权限配置正确,并准备合适的AOI(区域)和标签数据用于测试。

2025-08-29

【遥感图像处理】基于GeoPandas与exact-extract的多时相影像特征提取:城市土地利用分类后处理系统实现

内容概要:该文档提供了一个基于Python的地理空间数据处理脚本,主要功能是从遥感影像中对分割生成的地理区域(segments)提取多种统计特征(如均值、标准差、最小值、最大值等),并进行数据后处理与结构化保存。脚本利用Geopandas读取矢量分割结果,结合exact_extract工具对每个区域在多幅影像上执行快速统计计算,随后对结果中嵌套的属性字段进行解析与扁平化处理,最终将特征数据与标签信息合并,输出为结构清晰的CSV文件。整个流程包括路径管理、数据加载、特征提取、数据清洗与标签融合,确保输出结果的可用性和完整性。; 适合人群:具备Python编程基础,熟悉地理信息系统(GIS)数据处理的科研人员或开发人员,尤其是从事遥感影像分析、城市规划、环境监测等领域工作者;需了解Pandas、Geopandas及GDAL等工具的基本使用。; 使用场景及目标:①在遥感图像分割后,为每个分割区域提取多源影像的定量特征;②实现自动化、批量化特征提取与标签关联,支持后续机器学习建模或空间分析任务;③解决原始输出中字段嵌套导致的数据使用不便问题,提升数据处理效率。; 阅读建议:使用前需确保环境已安装geopandas、exactextract、pandas、osgeo.gdal等依赖库,理解脚本中路径配置与影像命名规则,可根据实际数据结构调整config和image_list参数。

2025-08-29

【遥感影像处理】基于Google Earth Engine的HLS数据下载与几何中值合成:多时相影像融合与分块下载系统实现

内容概要:该文档为一段Python代码,主要用于与Google Earth Engine(GEE)平台交互,获取HLS(Harmonized Landsat Sentinel)卫星影像数据并下载影像合成产品。代码实现了筛选指定时间范围和研究区域的Landsat与Sentinel影像,通过统一的波段命名和掩膜处理进行数据预处理,并计算影像集合的几何中值以生成合成影像。为解决大区域下载可能超出GEE限制的问题,代码将研究区域分割为多个小块,分块下载并记录临时文件路径,确保下载过程的稳定性和可恢复性。同时,代码包含重试机制和日志功能,增强鲁棒性。; 适合人群:具备Python编程基础,熟悉遥感数据处理或Google Earth Engine平台的科研人员或地理信息系统(GIS)开发者;适合有一定地理空间数据分析经验的研究生或技术人员。; 使用场景及目标:①用于批量获取和处理HLS多源卫星影像数据;②生成高质量的地表反射率合成影像,支持环境监测、土地利用分析等应用;③解决GEE大区域下载限制问题,实现稳健的数据导出。; 阅读建议:使用前需配置GEE Python环境,理解代码中分块下载逻辑和影像预处理步骤,建议结合GEE官方文档调试区域范围和时间参数,确保请求符合平台限制。

2025-08-29

遥感监测基于Sentinel-1雷达影像的RVI植被指数计算:SAR数据预处理与植被动态分析系统实现

内容概要:本文介绍了如何使用Google Earth Engine(GEE)平台处理Sentinel-1合成孔径雷达(SAR)数据,核心内容包括构建时间范围和区域筛选的SAR影像集合,并计算雷达植被指数(RVI)。通过定义_calculate_rvi函数实现RVI的波段计算,利用VV和VH极化波段按照特定公式生成RVI指数,并将其添加到原始影像中。此外,get_s1_collection函数封装了数据筛选流程,包括按日期、地理范围、传感器模式和极化方式过滤,最终返回包含RVI波段的影像集合;适合人群:具备遥感数据处理基础,熟悉Python编程及Google Earth Engine平台的科研人员或技术人员;使用场景及目标:①用于农业监测、植被覆盖分析和生态环境研究中的SAR数据自动化处理;②构建长时间序列RVI指标以评估植被动态变化;阅读建议:在实际应用中需确保研究区范围内有充足的S1数据覆盖,并注意影像是否经过辐射定标与地形校正预处理,建议结合光学遥感数据进行交叉验证以提高分析可靠性。

2025-08-29

【地理信息处理】基于GeoPandas的矢量纯度过滤:遥感影像分割区域标签映射CSV生成系统设计

内容概要:该文档描述了一个基于矢量数据的纯净度过滤算法,用于生成将纯净的图像分割片段ID与其文本标签及数字类别ID关联的CSV映射文件。程序首先加载分割后的多边形矢量数据与地面真实标签数据,并确保两者坐标系统一致;随后通过空间连接操作识别每个分割片段与标签的交集关系,利用“纯净”标准(即每个片段仅对应单一标签)筛选出纯净片段;接着为这些纯净片段建立标签映射表,并为其分配唯一的数字类别ID;最终将结果保存为CSV文件,避免重复处理已存在的输出。该流程适用于遥感图像或地理空间数据中的语义分割预处理环节。; 适合人群:具备地理信息系统(GIS)数据处理基础、熟悉Python编程及geopandas库的科研人员或数据工程师;有一定空间分析经验的遥感、城市规划、环境监测等领域从业者。; 使用场景及目标:①在图像分割后处理中识别并提取标签纯净的区域用于模型训练;②构建可追溯的片段-类别ID映射关系,支持后续分类或评估任务;③实现自动化标签管理,提升数据处理效率与一致性。; 阅读建议:建议结合实际地理空间数据运行代码,理解空间连接与分组统计的操作逻辑,注意配置文件中路径与字段名的正确设置,确保输入数据的CRS一致性。

2025-08-29

【遥感影像分析】基于Sentinel-1的VH极化数据洪水监测:利用Refined Lee滤波与Google Earth Engine实现多时相水体提取与面积统计

内容概要:本文档为基于Google Earth Engine(GEE)平台的遥感影像分析脚本,主要针对IdahIbaji研究区域利用Sentinel-1 SAR数据进行洪水监测。脚本首先定义研究区ROI,并加载Sentinel-1 GRD数据集,筛选VH极化、IW模式及升轨/降轨数据。为抑制SAR影像固有的斑点噪声,集成自然对数转换、分贝转换及Refined Lee滤波算法。核心分析函数analyzeFlood按年份(2018、2022、2024)对比洪水发生前后的影像,通过阈值分割(-20 dB)提取水体变化,生成洪水淹没图与稳定水体图,并计算淹没面积(km²)。同时,输出影像直方图与变化图统计,辅助分析洪水动态。结果可视化包含地图图层与图表,并添加图例说明。; 适合人群:具备遥感与GIS基础知识,熟悉Google Earth Engine平台及JavaScript脚本编写的科研人员或技术人员;适合从事洪水监测、灾害评估或SAR影像处理的相关领域工作者。; 使用场景及目标:①实现多时相SAR影像的洪水范围提取与面积统计;②掌握Refined Lee滤波在GEE中的应用;③学习基于影像差值与阈值分割的水体变化检测方法;④构建可复用的洪水监测自动化流程。; 阅读建议:此脚本高度依赖GEE环境与特定数据集,建议在GEE代码编辑器中运行并调试;学习者应结合实际区域调整ROI、时间范围与阈值参数,并深入理解滤波算法与影像处理逻辑,以适应不同场景应用。

2025-08-29

main_all_type.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

ECMWF_ERA5_Preprocess_lib.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

Batch_run.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

canopy_lib.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

Echo_parameter.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

get_local_lucc.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

get_DEFMAP.py

GEE-MEGAN 将 MEGAN2.1 生物源挥发性有机化合物(BVOC)模型扩展到 Google 地球引擎(GEE)。利用动态的、基于卫星的陆地覆盖和植被数据,它生成近实时分辨率为 10-30 米的 BVOC 排放,并且可以运行大陆尺度(500 米)或全球尺度(5 千米)的模拟。引用:Zhang, Y., Ran, H., Guenther, A. et al. Improved modelling of biogenic emissions in human-disturbed forest edges and urban areas. Nat Commun 16, 8064 (2025). https://doi.org/10.1038/s41467-025-63437-8

2025-08-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除