- 博客(4587)
- 资源 (1934)
- 收藏
- 关注
原创 GEE案例:基于landsat 8 NDWI阈值法和机器学习方法的填海造地面积计算(珠海为例)
本文介绍了利用Google Earth Engine平台和Landsat 8卫星影像监测填海造地变化的技术方法。通过NDWI指数阈值法和机器学习分类(CART)两种方法,对2017-2024年特定区域的填海造地变化进行定量分析。技术流程包括研究区域定义、影像预处理、NDWI计算、分类器训练及结果对比。研究发现机器学习方法能更准确地识别填海区域,而NDWI阈值法则更简便易行。该方法不仅适用于填海监测,还可扩展应用于海岸线变迁、湿地退化评估等领域,为海岸带管理提供科学依据。
2025-09-01 18:30:00
1
原创 GEE训练教程:2021-2022年研究区域的日径流总量,将径流深度(毫米)转换为体积(立方米)和流量率(立方米/秒)
本文介绍利用Google Earth Engine处理NASA GLDAS数据计算日地表径流的方法。通过加载GLDAS-2.1 NOAH模型3小时间隔数据,计算2021-2022年研究区域的日径流总量,将径流深度(毫米)转换为体积(立方米)和流量率(立方米/秒)。代码包含研究区域定义、面积计算、时间序列处理、单位转换等关键步骤,最终将结果导出为CSV文件。该方法适用于流域尺度的水文分析,为水资源管理、洪水预测等提供数据支持。
2025-09-01 09:00:00
101
1
原创 2001-2024年全球Tasseled Cap 湿度 (TCW) 无空缺数据集
该数据集由疟疾地图集项目提供,包含2001-2024年间1公里分辨率的8日、月度和年度苔帽湿度(TCW)数据。数据通过填补MODIS BRDF影像缺失值生成,并经过阈值裁剪处理[-1,2]。数据集包含"Mean"波段,取值范围[-0.84,0.96],提供三种时间聚合产品代码示例。研究采用Weiss等人(2014)的缺口填充方法,有效解决了云层遮挡等导致的数据缺失问题。该数据可用于全球植被湿度监测及相关生态研究。
2025-09-01 07:00:00
252
原创 GEE训练教程:归一化差异植被指数 (NDVI)、修改的归一化差异水体指数 (MNDWI) 和自动水体提取指数 (AWEI)
本文介绍了使用Google Earth Engine计算水体指数的方法,主要包括NDVI、MNDWI和AWEI三种指数。首先加载Sentinel-2影像和Manaus区域数据,通过云量和日期筛选后计算中位数影像。然后分别计算三种水体指数:NDVI(近红外和红光波段)、MNDWI(绿光和短波红外波段)以及AWEI(多波段组合)。通过设置阈值(如MNDWI>0)生成水体掩膜,并配置可视化参数进行展示。最后将计算结果导出到Google Drive。该方法为水体监测提供了有效的技术方案,可应用于区域水资源评估
2025-08-31 16:13:27
18
原创 2020 年全球天然森林概率地图10 米分辨率
《全球天然森林2020》数据集提供了10米分辨率的全球天然森林概率地图,支持欧盟《森林砍伐法规》等保护工作。该数据通过多模态时空视觉Transformer模型分析Sentinel-2卫星影像和地形数据生成,可区分天然林与人工林等类型。但存在农林复合系统识别困难、人工林与天然再生林区分度不足等限制。数据集包含3种土地覆盖分类,用户可通过设置概率阈值生成二值化森林图。该成果由Nature Trace团队开发,相关论文正在审核中。
2025-08-31 15:00:00
334
原创 2001-2024年全球Tasseled Cap 亮度 (TCB) 无空缺数据集
疟疾地图集项目提供了一套填补缺失数据的Tasseled Cap亮度(TCB)数据集,该数据集基于MODIS BRDF校正影像(MCD43B4)生成,采用缺口填充方法消除云覆盖等因素造成的数据缺失。数据集包含8日、月度和年度三种时间分辨率产品,空间分辨率5公里,波段值范围0-1.99。项目提供了三种时间尺度的可视化代码示例,并采用9色渐变调色板展示全球TCB分布。该数据集主要应用于大尺度遥感时间序列分析,相关方法发表在ISPRS期刊上(Weiss等,2014)。
2025-08-31 09:00:00
136
原创 英格兰农业景观半自然特征(树篱、林地和石墙)高分辨率 (25 厘米) 概率地图
Farmscapes 2020数据集提供了英格兰农业景观中树篱、林地和石墙三种半自然特征的高分辨率(25厘米)概率地图。该数据集由牛津Leverhulme自然恢复中心合作开发,基于视觉Transformer模型处理航空影像生成,包含三个概率层,用户可自定义阈值生成二元特征图。数据集适用于景观恢复、生物多样性监测等用途,但存在地理范围限制、时间准确性和类别不平衡等问题。另提供实验性欧洲版本数据集,可通过指定表单申请访问。
2025-08-31 08:30:00
294
原创 GEE python高阶——如何使用geemap和eemont包基于Landsat 8的长时间序列的GNDVI和EVI的时序分布(最大值、最小值和平均值)
Landsat 8是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合推出的一颗遥感卫星,该卫星搭载了一台称为Operational Land Imager (OLI)的传感器,可以获取高分辨率的地球表面图像。GNDVI(Green Normalized Difference Vegetation Index)和EVI(Enhanced Vegetation Index)是两个常用于评估植被生长状况的指数,在长时间序列分析中具有重要意义。
2025-08-31 07:00:00
27
原创 GEE训练教程:基于多年Sentinel-1洪水监测分析和可视化
本文介绍了一种基于Sentinel-1 SAR数据和Google Earth Engine平台的洪水监测方法。该方法利用SAR数据全天候观测优势,通过精炼Lee滤波降噪处理和变化检测技术,实现高效准确的洪水淹没范围提取。技术流程包括数据筛选、预处理、水体识别(VH极化通道阈值<-20dB)和变化检测分析,可自动化计算淹没面积并可视化结果。该方法具有处理高效、成本低廉、近实时监测等优势,为洪水灾害评估、城市规划及气候变化研究提供了可靠的技术支持。
2025-08-30 11:12:31
23
1
原创 2000-2024年全球地表温度LST(白天/夜间)无空缺数据(8天/逐月/逐年)
摘要: 疟疾地图集项目(Malaria Atlas Project)提供了2001-2024年全球陆地表面温度(LST)数据集,包括白天和夜间数据。基于MODIS MOD11A2 v6.1产品,采用Weiss等人(2014)的缺口填充方法处理云覆盖等造成的数据缺失,并将8天合成数据转换为摄氏度后生成1km分辨率产品。数据经时间聚合形成月度/年度产品,温度范围限制在[-100,100]°C。数据集包含6种时间分辨率(8天/月/年×昼夜),可通过JavaScript代码调用,并采用特定色阶进行可视化。该数据对研
2025-08-30 09:30:00
587
原创 探索美国生态:NEON(冠层高度模型、DEM、RGB、高光谱地表反射率)1m数据集
摘要:美国国家生态观测网络(NEON)提供多源遥感数据产品,包括:1)1米分辨率的冠层高度模型(CHM),通过LiDAR点云生成;2)数字高程模型(DEM),包含地表(DSM)和地形(DTM)数据;3)0.1米分辨率RGB正射影像;4)高光谱反射率数据,包含426个波段(380-2510nm)。这些1米分辨率的数据产品覆盖美国及波多黎各81个观测点,支持生态监测与研究。所有数据均可通过NEON数据门户获取,部分已集成至Google Earth Engine平台。
2025-08-30 09:00:00
741
原创 GEE训练教程:2000年至2024年间海南岛区域的热浪归一化指数(HNI)
本文介绍了利用Google Earth Engine平台计算2000-2024年海南岛热浪归一化指数(HNI)的方法。研究基于MODIS地表温度数据,通过温度阈值法识别热浪日,将热浪日数归一化为0-1范围的HNI指数。结果显示海南岛北部和西部为HNI高值区。该指数可用于识别热浪高风险区域、评估气候变化影响及支持城市规划决策。研究提供了完整代码实现,包括数据预处理、热浪日识别和HNI计算等关键步骤,并建议根据实际气候条件调整热浪阈值。
2025-08-30 00:21:55
17
原创 CERES 云层和辐射带水 FM3 MODIS 版本 2C
CER_CRS_Aqua-FM3-MODIS_Edition2c 是云与地球辐射能量系统 (CERES) 云与辐射带 (CRS) Aqua-Flight 模型 3 (FM3) 中分辨率成像光谱仪 (MODIS) Edition2C 数据产品,该产品使用 Aqua 平台上的 CERES-FM3 仪器收集。该产品的数据收集已完成。
2025-08-30 00:17:09
858
原创 GEE python:基于sentinel-2的NDVI指数的森林物候参数计算分析和可视化(SOS\EOS\LOS)
本文介绍了利用Google Earth Engine和Python进行遥感物候分析的方法,通过HLS卫星数据计算NDVI时间序列,提取生长季开始/结束日和长度等关键参数。技术栈包括GEE、geemap、xarray和xee库,实现流程涵盖数据获取、云掩膜处理、NDVI计算、时间序列平滑和物候参数提取。该方法可用于农业监测、生态环境研究等领域,但需注意数据质量、分辨率选择和阈值设置等问题。文章提供了完整的代码示例和结果可视化方案。
2025-08-29 20:00:00
129
原创 全球EVI无空缺数据集:增强型植被指数(每 8 天 /逐月/逐年)数据集
《基于MCD43B4的疟疾地图项目增强型植被指数数据集》提供了2001-2024年全球1km分辨率的EVI数据。该数据集采用Weiss等人(2014)提出的缺口填充方法处理MODIS BRDF校正影像,消除了云覆盖等造成的数据缺失,并将值限定在[0,1]范围内。提供8天、月度和年度三种时间聚合产品,通过JavaScript代码可实现数据调用和可视化。该数据集可用于监测全球植被动态变化,特别适用于疟疾传播风险研究。数据引用建议参考Weiss等人在ISPRS期刊发表的相关论文。
2025-08-29 10:00:00
520
原创 GEE错误:FeatureCollection.remap()方法的一个文档与实际行为不符的问题
本文报告了Google Earth Engine中FeatureCollection.remap()方法的一个文档与实际行为不符的问题。测试表明,虽然API文档说明该方法支持字符串和整数两种类型的重映射,但实际使用字符串时会抛出类型错误(要求List<Integer>但传入List<String>)。作者提供了将字符串转换为整数后再进行重映射的变通方案,并建议官方要么修复实现以支持字符串,要么更新文档以反映仅支持整数的限制。该案例展示了API文档与实现不一致的情况,对开发者具有实际参
2025-08-29 09:00:00
400
1
原创 GEE图表:山西植被2000-2025年NDVI动态变化图谱
摘要:本文使用Google Earth Engine平台处理MODIS植被指数数据,分析中国山西省某地区的植被变化。代码通过加载2000-2025年数据,应用云雪掩膜和NDVI值缩放等预处理步骤,最终生成NDVI年积日时间序列图表,用于研究植被生长的季节性变化。该可视化方法能有效展示区域植被动态变化趋势。
2025-08-28 09:00:00
310
原创 GEE 案例:利用OpenLandMap土壤质地和降水计算地表径流并对比降水和径流的逐日数据(以2024年辽宁朝阳市为例)
计算径流量是通过将降水量与土壤质地的水分入渗能力相结合来确定的。水分入渗能力受土壤质地、土壤饱和度、施加的水压力等因素的影响。以下是一种常用的方法来计算径流量:1. 了解土壤质地:土壤质地是指土壤中不同粒径的比例。常见的土壤质地包括沙、粉砂、壤土、粘土等。每种土壤质地具有不同的水分入渗能力。2. 确定土壤饱和度:土壤饱和度表示土壤中已有的水分量相对于土壤容纳水分的百分比。饱和度可以根据实地观测或者模型估计得到。3. 了解降水量:降水量是指单位时间内降落在地表的水分量。
2025-08-28 07:00:00
337
原创 GEE图表:洪都拉斯NO2浓度变化趋势分析
摘要 该代码利用Google Earth Engine获取2019-2020年哥白尼S5P卫星的NO2浓度数据,分析洪都拉斯特定位置的空气质量变化。通过过滤前60天数据保证质量,生成时间序列图表展示两年数据对比(2019年红色,2020年蓝色)。图表横轴显示6-11月,纵轴为NO2浓度值,采用函数曲线平滑显示趋势变化。该可视化方法可有效监测该地区大气污染物的季节性变化特征。
2025-08-27 18:00:00
188
1
原创 GEE APP:基于ECMWF/ERA5/MONTHLY 数据的降水和气温的可视化图表以及趋势分析(直方图和折线图)
摘要 AOI气候处理器是一个基于ECMWF/ERA5月度数据集的气候分析工具,主要功能包括: 数据处理:自动加载ERA5数据并进行单位转换(降水转毫米,温度转摄氏度) 气候分析:计算月度气候学(均值/中位数)和年度时间序列 可视化输出:生成交互式图表和地图界面,展示降水与温度变化趋势 数据导出:支持将月度气候栅格数据导出至Google云端硬盘 系统提供高度可定制性,用户可设置研究区域、时间范围及统计方法等参数。输出包含12个月的独立气候图像和带趋势分析的年度时间序列图,适用于区域气候长期变化研究。
2025-08-27 09:30:00
305
原创 WorldPop全球人口数据(2015-2030):高精度网格化人口分布新标杆(100米分辨率)
WorldPop发布2015-2030年全球网格化人口数据集,采用创新机器学习技术提供100米分辨率的人口分布数据。该数据集整合最新人口普查和地理空间协变量,通过随机森林分层建模方法将行政单元人口精准分配至网格单元。包含约束模型(限于定居区域)和非约束模型(覆盖所有陆地),具有年度时间序列、年龄性别分组等特点。数据可通过HDX平台或Google Earth Engine获取,适用于人口分布研究、城市规划等应用。配套开发的GEE可视化平台支持全球主要城市的人口密度分析,提供交互式探索功能。
2025-08-27 09:00:00
25
原创 GEE高阶案例——ee.App进行应用程序的管理可以查看程序创建者和获取相应的源代码
简介让我们来定义一个感兴趣的地球引擎应用程序: 光谱相遇(哨兵-2)!
2025-08-27 07:00:00
266
原创 GEE APP:用于监测罗坎希尔县(Riau)的森林和土地火灾的应用
GeoFlare是一款基于Google Earth Engine的森林火灾监测应用,专为印尼罗坎希尔县设计。该应用整合Sentinel-2卫星影像、FIRMS火点数据及NDVI/NBR等植被指数,采用随机森林算法进行火灾区域分类。用户可通过交互界面选择年份、查看不同图层,系统会显示分类结果及评估指标(包括总体准确率、Kappa系数等)。应用支持2019-2023年历史数据分析,并提供详细的术语解释和使用教程,帮助用户理解卫星遥感技术和机器学习方法在火灾监测中的应用。
2025-08-26 09:30:00
111
1
原创 GEE训练教程:进行指定区域的DEM可视化并下载
本文介绍了使用Google Earth Engine处理SRTM DEM数据的完整流程。首先定义感兴趣区域(ROI)并加载30米分辨率的SRTM数据,然后通过裁剪操作聚焦分析区域。设置可视化参数后,将DEM数据和边界图层添加到地图中展示。最后演示了如何将处理后的数据导出到Google Drive,包含导出参数设置和坐标系统配置。整个过程展示了GEE平台处理地形数据的高效方法,为地理空间分析提供了实用技术路线。
2025-08-25 22:09:11
119
原创 来自 CLAMS 2001 活动的机载多角度成像光谱仪 (AirMISR) 数据
AIRMISR_CLAMS_2001 数据是在 2001 年 7 月 12 日、7 月 17 日、8 月 1 日和 8 月 2 日的 CLAMS 活动期间获取的。该数据由位于加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 提供。切萨皮克灯塔和卫星飞机测量 (CLAMS) 实地活动于 2001 年夏季在切萨皮克湾的 CERES 海洋验证实验 (COVE) 站举行,该实验站位于弗吉尼亚海滩以东 20 公里处。
2025-08-25 22:04:33
992
原创 GEE错误:为什么使用1m分辨率的DEM(3DEP/1m)进行slope坡度分析的过程中无法运算?
摘要 本文解决了使用1米分辨率USGS 3DEP DEM数据生成坡度图时出现的问题。原始代码因未正确设置投影坐标系导致坡度计算失败。通过将DEM数据重新投影到EPSG:4326坐标系并设置1米分辨率(scale:1),成功生成了正确的坡度图。修正后的代码展示了如何正确处理高分辨率DEM数据以获得准确的地形分析结果。
2025-08-25 13:30:00
401
原创 GEE数据集:三维高程计划(3D Elevation Program,3DEP)中像素尺寸为 1m/10m
美国地质调查局(USGS)提供的1米分辨率3DEP数字高程模型(DEM)数据集,采用激光雷达技术生成,覆盖美国大陆,采用UTM坐标系和NAD83基准,高程值以米为单位参照NAVD88基准。该数据代表裸露地形,各项目间可能存在高程差异,适用于高精度地理研究和制图。配套代码示例展示了如何通过Earth Engine调用和可视化该数据集。
2025-08-25 09:00:00
394
1
原创 微软行星云计算:通过Planetary Computer STAC API 访问 Landsat Collection 2 Level-1 和 Level-2 数据
Landsat Collection 2包含Level-1和Level-2两个级别的卫星数据产品,覆盖1972年至现今的全球遥感影像。Level-1数据提供原始校准数字值,可转换为大气顶层反射率/辐射度或亮温;Level-2产品经过大气校正,提供地表反射率和温度数据。数据由NASA和USGS联合生产,以云优化GeoTIFF格式存储,包含多光谱、热红外等多个波段(如TM、ETM+、OLI/TIRS传感器),涵盖可见光至长波红外谱段。该数据集为公共领域资源,支持广泛的遥感应用,包括环境监测和土地利用分析。
2025-08-25 07:00:00
606
原创 GEE训练教程:整合Hansen全球森林变化数据和RADD雷达警报数据,用于分析指定区域内的森林砍伐趋势
森林砍伐监测分析脚本摘要 本GEE脚本整合Hansen全球森林变化数据(30m)和RADD雷达警报(10m)两种数据源,用于监测东库泰地区2020-2024年的森林砍伐情况。主要功能包括:1)提取并处理两套数据集;2)生成二值化砍伐掩膜;3)计算各数据集及综合结果的砍伐面积(公顷);4)可视化展示砍伐分布。脚本采用多源数据融合技术,通过光学与雷达数据的互补提高监测准确性,支持自定义时空范围调整,适用于森林资源动态监测、非法砍伐识别等应用场景。技术亮点包括分辨率差异化处理、时间序列分析和优化可视化效果。
2025-08-24 20:18:36
25
原创 BARC 2001 活动的机载多角度成像光谱仪 (AirMISR) 数据
AirMISR BARC 2001 数据是在 2001 年 7 月 21 日飞越贝尔茨维尔农业研究中心 (BARC) 时获得的。加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 提供了该数据。机载多角度成像光谱仪 (AirMISR) 是一种机载仪器,用于获取与星载多角度成像光谱仪 (MISR) 类似的多角度图像,旨在为地球生态和气候研究做出贡献。AirMISR 搭载在 NASA ER-2 飞机上。加利福尼亚州帕萨迪纳的喷气推进实验室为 NASA 制造了该仪器。
2025-08-24 20:13:11
552
原创 突破地理空间AI瓶颈:AlphaEarth Foundations如何用稀疏标签实现高精度全球制图
AlphaEarth Foundations(AEF)突破性地解决了地理空间AI面临的数据洪流与标签稀缺矛盾。通过构建时空连续的64维嵌入场,AEF仅需64字节就能表征地表属性,在10米分辨率下将15项地理空间任务的误差平均降低23.9%。其核心创新包括时空感知嵌入场模型、多分辨率并行STP编码器,以及融合对比学习与文本对齐的三重训练机制。评估显示,AEF在39类树种分类等任务中显著优于现有方法,且支持零样本迁移。该技术已生成2017-2024年全球10米分辨率嵌入场,通过Google Earth Engi
2025-08-24 15:00:00
847
原创 GEE AI :利用Satelite Embedding数据进行地表相似性分析和可视化
摘要 本文介绍了一种基于卫星图像嵌入向量的地表相似度分析方法。方法通过Google卫星嵌入数据集,提取64维特征向量,计算样本点与目标区域的余弦相似度,生成热图并创建二值掩膜。主要步骤包括:1)定义分析区域和样本点;2)加载指定年份的卫星嵌入数据;3)在样本点提取嵌入向量;4)计算与全区域的余弦相似度;5)通过阈值处理生成二值掩膜识别相似地表类型。系统支持调整年份、块大小、相似度阈值等参数,并可进行结果可视化与导出。该方法适用于快速识别特定地表特征的空间分布模式。
2025-08-24 09:00:00
966
原创 GEE APP基于卫星影像嵌入卫星数据的相似性(变化检测)交互式工具——以武汉市东湖水域提取为例
摘要 本文介绍了一款基于Google Earth Engine的卫星影像相似性搜索工具。该工具利用Google Satellite Embeddings V1数据集,通过64维特征向量和余弦相似度算法,能够快速识别与用户样本点相似的地表区域。主要功能包括交互式绘图、多时间维度分析(2017-2025)、相似度热图生成和结果导出。文章详细介绍了工具的操作流程、技术原理和性能优化建议,并提供了常见问题解答。该工具适用于地表变化监测、地物提取、生态研究和城市规划等多种
2025-08-24 08:00:00
27
原创 微软行星云计算:微软研究院城市创新小组领导的低成本空气质量监测网络数据集
项目Eclipse网络是一个低成本的城市空气质量监测网络,由微软研究院城市创新小组领导的研究项目。目前在美国伊利诺伊州芝加哥市部署了超过100个监测点。
2025-08-24 07:00:00
1161
原创 GEE APP:Sentinel-2多时相光谱指数(NBR\NDVI\NDWI\SAVI等)可视化分析
摘要 本代码实现了基于Google Earth Engine的Sentinel-2遥感影像分析系统,主要功能包括: 研究区域和时间范围定义(美国德州休斯顿区域,2017-2025年) 数据加载与预处理:加载Sentinel-2地表反射率数据,应用云掩膜和数据重缩放 多指数计算:支持7种遥感指数(NDVI、NDWI、MNDWI、NDBI、SAVI、EVI、NBR) 交互式可视化:提供指数选择和日期选择界面,显示选定指数的时间序列图表 数据导出:可将结果导出到Google Drive 系统采用模块化设计,包含数
2025-08-23 14:30:00
35
1
原创 GEE Python:基于NOAA降水数据的主成分分析(PCA)与经验正交函数(EOF)的空间莫泰分析
本文详细介绍了基于Google Earth Engine (GEE)的数据处理与分析流程。首先通过Python API导入必要的库并初始化GEE环境,包括身份验证和项目设置。然后定义了西班牙作为研究区域,并创建交互式地图进行可视化。接着加载了2001-2010年的NOAA降水数据,将其转换为xarray格式数据集。文章重点演示了时空分析方法,包括计算时间平均降水和执行主成分分析(PCA/EOF)以识别主要降水模式。关键步骤涉及数据筛选、格式转换、统计分析及结果可视化,展示了GEE在环境数据处理中的完整应用流
2025-08-23 09:00:00
24
原创 行星云计算:使用行星计算机 STAC API 访问影响观测站的生物多样性完整性数据
全球生物多样性完整性数据集(2017-2020年)由Impact Observatory和Vizzuality合作开发,提供100米分辨率的陆地生物多样性评估。该数据集基于PREDICTS数据库,结合人类压力因素建模,计算生物多样性丰度和物种组成相似性两个关键指标,并通过STAC API提供访问。案例展示了如何使用Python工具链查询和可视化巴西特定区域的数据,为科学家和政策制定者提供及时、高精度的生物多样性监测工具。数据集采用CC BY 4.0许可,托管在微软行星计算机平台上。
2025-08-23 07:00:00
727
原创 GEE训练教程:基于Sentinel-5P 数据集来监测二氧化硫(SO2)的浓度的时序分析
这篇博客介绍了如何利用Google Earth Engine和Sentinel-5P卫星数据监测二氧化硫(SO2)浓度。主要内容包括:1)定义感兴趣区域;2)加载并过滤Sentinel-5P的SO2数据集;3)计算区域平均SO2浓度;4)设置可视化参数展示SO2空间分布;5)创建时间序列图表分析SO2浓度随时间变化;6)添加图例帮助解读数据。通过完整的代码示例,演示了从数据获取到可视化的完整监测流程,为环境空气质量研究提供了实用工具。
2025-08-22 13:16:14
38
原创 AIRS/Aqua L1C 红外(IR)在 GES DISC 上重新采样并校正辐射 V6.7(AIRICRAD)
大气红外探测器 (AIRS) 是安装在第二个地球观测系统 (EOS) 极地轨道平台 EOS Aqua 上的一台光栅光谱仪 (R = 1200)。AIRS 与先进微波探测装置 (AMSU) 和巴西湿度探测器 (HSB) 结合,组成了一个由可见光、红外和微波传感器组成的创新型大气探测组。AIRS 红外 (IR) 1C 级数据集包含 AIRS 红外校准和地理定位辐射度,单位为 W/m2/微米/ster。该数据集由 AIRS 1B 级数据生成。L1C 数据的光谱覆盖范围为 3.74 至 15.4 毫米。
2025-08-22 13:11:17
856
原创 Google Earth Engine编程基础:编程实战指南
这篇博客介绍了使用Google Earth Engine(GEE)和JavaScript进行基础编程的指南。主要内容包括:1)创建数字、字符串和数组三种不同类型的对象;2)修复常见JavaScript代码错误;3)使用ee.Number对象的add方法进行数值运算;4)将JavaScript对象转换为Earth Engine对象;5)修复函数中的错误。文章提供了完整的代码示例,展示了如何创建对象、处理数据类型转换、使用GEE特有方法等基础操作,帮助读者掌握GEE平台的基本编程技巧。代码运行结果也一并展示,验
2025-08-22 09:00:00
271
gamma_lib.py
2025-08-29
Image_Postprocessing.py
2025-08-29
EMPORC.py
2025-08-29
【遥感影像处理】基于Landsat 8的地表参数反演:地表温度与辐射平衡关键指标计算系统设计
2025-08-29
Solutions_CoursBasePython.ipynb
2025-08-29
1a Créer et gérer des tableaux de bord à l'aide de l'AP.ipynb
2025-08-29
1.Importer_et_Interpréter_les_données_GFS.ipynb
2025-08-29
Importer_et_Interpréter_les_données_IMERG.ipynb
2025-08-29
enhanced_steps.py
2025-08-29
2_FR_Nowcast_HSAF-H60B_STEPS.ipynb
2025-08-29
1_FR_Téléchargement_HSAF-H60B.ipynb
2025-08-29
1.Cours_de_base_Python.ipynb
2025-08-29
Old_Extraction des estimations de précipitations à partir de l'API Rainsat - FR.ipynb
2025-08-29
【遥感与地理信息】基于Google Earth Engine的NDVI时间序列分析:作物生长季长度提取与变化监测
2025-08-29
【地理信息系统】基于Google Earth Engine的地表径流计算与导出:流域24377区域日径流数据处理及流量分析系统设计
2025-08-28
【遥感影像处理】基于Landsat 8/9的NDVI与NDBI指数计算:地表植被与建筑覆盖监测系统实现
2025-08-28
【数据处理与分析】基于Pandas的流感风险等级CSV文件处理:按邮政编码统计年份及特定记录查询文档的主要内容和
2025-08-27
【环境健康分析】基于Python与GEE的温度变化与疾病发生率关联研究:城市流行病周度数据时空相关性建模
2025-08-27
地球科学基于Python和Google Earth Engine的地表温度与百分比数据的交叉相关性分析:年份分组计算滞后效应和协方差
2025-08-27
数据处理基于Pandas的JSON文件分析工具:列值统计与多条件筛选功能实现
2025-08-27
遥感监测基于Sentinel-5P的空气污染物分析:新加坡区域SO2、NO2和CO浓度时空分布评估系统
2025-09-01
【遥感生态评估】基于多光谱指数的沿海生境条件综合评价:NDVI与双NDWI模型在栖息地健康监测中的集成应用
2025-09-01
【地理信息科学】基于Google Earth Engine的行政区划影像数据查询系统:多源遥感数据集成与交互式可视化分析平台设计
2025-09-01
【遥感与气象分析】基于Google Earth Engine的降水与SAR数据处理:多时相洪涝监测系统实现
2025-09-01
使用卫星(Sentinel-2)影像检测珊瑚白化分析
2025-08-30
【遥感图像处理】基于Google Earth Engine的多光谱与雷达影像分析:农作物区域分割与特征提取系统实现
2025-08-29
【遥感图像处理】基于GeoPandas与exact-extract的多时相影像特征提取:城市土地利用分类后处理系统实现
2025-08-29
【遥感影像处理】基于Google Earth Engine的HLS数据下载与几何中值合成:多时相影像融合与分块下载系统实现
2025-08-29
遥感监测基于Sentinel-1雷达影像的RVI植被指数计算:SAR数据预处理与植被动态分析系统实现
2025-08-29
【地理信息处理】基于GeoPandas的矢量纯度过滤:遥感影像分割区域标签映射CSV生成系统设计
2025-08-29
【遥感影像分析】基于Sentinel-1的VH极化数据洪水监测:利用Refined Lee滤波与Google Earth Engine实现多时相水体提取与面积统计
2025-08-29
main_all_type.py
2025-08-29
ECMWF_ERA5_Preprocess_lib.py
2025-08-29
Batch_run.py
2025-08-29
canopy_lib.py
2025-08-29
Echo_parameter.py
2025-08-29
get_local_lucc.py
2025-08-29
get_DEFMAP.py
2025-08-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人