Google Earth Engine——全球土地覆盖产品的基础数据集是MODIS年度土地覆盖产品(MCD12Q1)中的IGBP层

本文介绍了Malaria Atlas Project利用MODIS MCD12Q1数据集创建的IGBP分数土地覆盖产品,该数据集提供了17类土地覆被的百分比信息,分辨率高达5000米。研究者通过将分类数据转换为百分比表示,揭示了全球不同生态类型的分布情况,可用于环境研究和政策分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The underlying dataset for this landcover product is the IGBP layer found within the MODIS annual landcover product (MCD12Q1). This data was converted from its categorical format, which has a ≈500 meter resolution, to a fractional product indicating the integer percentage (0-100) of the output pixel covered by each of the 17 landcover classes (1 per band).

This dataset was produced by Harry Gibson and Daniel Weiss of the Malaria Atlas Project (Big Data Institute, University of Oxford, United Kingdom, [http://www.map.ox.ac.uk/] (http://www.map.ox.ac.uk/)).

这个土地覆盖产品的基础数据集是MODIS年度土地覆盖产品(MCD12Q1)中的IGBP层。该数据从其分类格式(具有≈500米的分辨率)转换为分数产品,表明17个土地覆被等级(每个波段1个)覆盖的输出像素的整数百分比(0-100)。

这个数据集是由Malaria Atlas项目的Harry Gibson和Daniel Weiss制作的(英国牛津大学大数据研究所,[http://www.map.ox.ac.uk/](http://www.map.ox.ac.uk/))。

Dataset Availability

2001-01-01T00:00:00 - 2013-01-01T00:00:00

Dataset Provider

Oxford Malaria Atlas Project

Collection Snippet

ee.ImageCollection("Oxford/MAP/IGBP_Fractional_Landcover_5km_Annual")

Resolution

5000 meters

Bands Table

NameDescriptionMinMaxUnits
Overall_ClassDominant class of each resulting pixel017
WaterPercentage of water0100%
Evergreen_Needleleaf_ForestPercentage of evergreen needleleaf forest0100%
Evergreen_Broadleaf_ForestPercentage of evergreen broadleaf forest0100%
Deciduous_Needleleaf_ForestPercentage of deciduous needleleaf forest0100%
Deciduous_Broadleaf_ForestPercentage of deciduous broadleaf forest0100%
Mixed_ForestPercentage of mixed forest0100%
Closed_ShrublandsPercentage of closed shrublands0100%
Open_ShrublandsPercentage of open shrublands0100%
Woody_SavannasPercentage of woody savannas0100%
SavannasPercentage of savannas0100%
GrasslandsPercentage of grasslands0100%
Permanent_WetlandsPercentage of permanent wetlands0100%
CroplandsPercentage of croplands0100%
Urban_And_Built_UpPercentage of urban and built up0100%
Cropland_Natural_Vegetation_MosaicPercentage of cropland natural vegetation mosaic0100%
Snow_And_IcePercentage of snow and ice0100%
Barren_Or_Sparsely_PopulatedPercentage of barren or sparsely populated0100%
UnclassifiedPercentage of unclassified0100%
No_DataPercentage of no data0100%

Class Table: Overall_Class

ValueColorColor ValueDescription
0#032f7eWater
1#02740bEvergreen_Needleleaf_Fores
2#02740bEvergreen_Broadleaf_Forest
3#8cf502Deciduous_Needleleaf_Forest
4#8cf502Deciduous_Broadleaf_Forest
5#a4da01Mixed_Forest
6#ffbd05Closed_Shrublands
7#ffbd05Open_Shrublands
8#7a5a02Woody_Savannas
9#f0ff0fSavannas
10#869b36Grasslands
11#6091b4Permanent_Wetlands
12#ff4e4eCroplands
13#999999Urban_and_Built-up
14#ff4e4eCropland_Natural_Vegetation_Mosaic
15#ffffffSnow_and_Ice
16#feffc0Barren_Or_Sparsely_Vegetated
17#020202Unclassified

数据引用:

Weiss, D.J., P.M. Atkinson, S. Bhatt, B. Mappin, S.I. Hay & P.W. Gething (2014) An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106-118.

代码:

var dataset =
    ee.ImageCollection('Oxford/MAP/IGBP_Fractional_Landcover_5km_Annual')
        .filter(ee.Filter.date('2012-01-01', '2012-12-31'));
var landcover = dataset.select('Overall_Class');
var landcoverVis = {
  min: 1.0,
  max: 19.0,
  palette: [
    '032f7e', '02740b', '02740b', '8cf502', '8cf502', 'a4da01', 'ffbd05',
    'ffbd05', '7a5a02', 'f0ff0f', '869b36', '6091b4', '999999', 'ff4e4e',
    'ff4e4e', 'ffffff', 'feffc0', '020202', '020202'
  ],
};
Map.setCenter(-88.6, 26.4, 1);
Map.addLayer(landcover, landcoverVis, 'Landcover');

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值