Google Earth Engine(GEE)——多源遥感变量筛选(PCA主成分分析),变量筛选/降维处理

本文介绍了如何使用Google Earth Engine (GEE)进行主成分分析(PCA)来筛选和降维多源遥感变量。PCA是一种数据降维方法,用于保留原始数据的主要信息。在PCA中,通过中心化处理、计算协方差矩阵、特征值分解等步骤来找到主成分。在GEE中,使用reduceRegions函数时需注意设置scale和CRS。文章以森林生物量分析为例,探讨了不同遥感数据变量如光谱波段、光谱指数等的组合效果,并提供了相应的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

很多时候我们需要进行数据的将为和筛选,传统的方法我们可以根绝经验方法进行筛选或者按照变量重要性和相关性进行分析,当然我们可以通过计算多个变量之间的主成分分析来进行变量的筛选,本文已森林生物量分析作为自变量,其它多源遥感变量作为相关性因变量,进行分类对比的主成分分析。

主成分分析(Principal Component Analysis,PCA)

主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维方法,它可以将高维数据降到低维空间中,同时尽量保留原始数据的信息。PCA的基本思想是将原始数据投影到一个新的坐标系中,使得投影后的数据方差最大。这个新的坐标系的基向量被称为主成分,它们可以用来描述原始数据的结构和特征。

PCA的应用非常广泛,例如在图像处理、信号处理、生物信息学、金融等领域都有应用。在图像处理领域,PCA可以用来进行图像压缩和降噪。在信号处理领域,PCA可以用来进行信号分析和特征提取。在生物信息学领域,PCA可以用来进行基因表达数据的分析和可视化。在金融领域,PCA可以用来进行资产组合优化和风险管理。

PCA的具体步骤如下:

1. 对原始数据进行中心化处理,即将每个特征的均值都减去。

2. 计算原始数据的协方差矩阵。

3. 对协方差矩阵进行特征值分解,得到特征值和特征向量。

4. 将特征向量按照对应的特征值大小从大到小排序。

5. 选取前k个特征向量组成投影矩阵,将原始数据投影到低维空间中。

6. 得到降维后的数据。

需要注意的是,在进行PCA之前需要对原始数据进行标准化处理,以避免不同特征之间的量纲不同对结果产

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值