Python应用开发——30天学习Streamlit Python包进行APP的构建(1)

这是一个30天学习Streamlit Python包构建Web App的教程系列。从设置conda环境开始,逐步讲解如何创建和运行Streamlit应用,包括使用st.button、st.header等组件。第一天主要涉及环境配置,如安装conda,创建环境,安装Streamlit,启动示例应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 关于 #30天学Streamlit

    #30天学Streamlit 是一个旨在帮助你学习构建 Streamlit 应用的编程挑战。

    你将学会:

    • 如何搭建一个编程环境用于构建 Streamlit 应用
    • 构建你的第一个 Streamlit 应用
    • 学习所有好玩的、能用在 Streamlit 应用里的输入输出组件

🗓️ 天 1

设置本地开发环境

在我们正式开始构建 Streamlit 应用之前,我们需要首先设置一个开发环境。

让我们从安装和配置 conda 环境开始。

安装 conda

  • 前往 https://docs.conda.io/en/latest/miniconda.html ,选择与你操作系统(Windows, Mac 或 Linux)对应的 conda 版本
  • 下载安装器并运行,完成 conda 的安装

新建一个 conda 环境

现在你已经装好了 conda ,让我们来创建一个 conda 环境来管理所有 Python 库依赖。

比如按照如下指令,使用 Python 3.9 版本创建一个新的环境:

conda create -n stenv python=3.9

其中 create -n stenv 表示创建一个名为 stenv 的 conda 环境,而 python=3.9 会指定 conda 环境使用 3.9 版本的 Python。

激活 conda 环境

要使用上一步刚创建好的名为 stenv 的 conda 环境,则需要使用如下的命令:

conda activate stenv

安装 Streamlit 库

激活环境之后就是时候安装 streamlit 库了:

pip install streamlit

启动示例 Streamlit 应用

用如下指令来启动示例 Streamlit 应用(图 1):

streamlit hello

附图

0

 🗓️ 天 2

构建你的第一个 Streamlit 应用

启动你的 IDE

启动你的 IDE,可以是 Atom、VS Code 甚至是诸如 GitPod 或 GitHub.dev 等云端 IDE。

新建一个名为 streamlit_app.py 的文件。

敲下你的第一行代码

打开新建的文件,写入如下几行代码:

import streamlit as st 

st.write('Hello world!')

然后保存文件。

启动命令行终端

前往终端,敲入命令:

streamlit run streamlit_app.py

然后应当弹出一个浏览器窗口,其中为你新创建的 Streamlit 应用。

恭喜你! 你刚刚搭建了人生中第一个 Streamlit 应用!

🗓️ 天 3

st.button

st.button 会显示一个按钮组件。

我们要做什么?

我们今天要搭建一个简单的应用,根据按钮是否按下的状态,显示不同的文字消息。

应用的流程:

  1. 默认情况下输出 Goodbye
  2. 一旦按下按钮,则会变为显示 Why hello there

示例应用

我们将要部署的 Streamlit 应用应该看起来和下面链接中的这个差不多:

代码

以下是实现前述应用的代码:

import streamlit as st

st.header('st.button')

if st.button('Say hello'):
     st.write('Why hello there')
else:
     st.write('Goodbye')

逐行解释

创建 Streamlit 应用时要做的第一件事就是将 streamlit 库导入为 st

import streamlit as st

然后紧跟着的是应用的标题文字:

​​​​​​​st.header('st.button')

接下来,我们会使用条件分支语句 if 和 else 来显示不同的消息:

if st.button('Say hello'):
     st.write('Why hello there')
else:
     st.write('Goodbye')

由这段代码可见, st.button() 语句接收了一个值为 Say hello 的 label 参数,会作为显示在按钮上的文字。

st.write 命令被用作显示文字消息,取决于按钮是否按下,显示的要么是 Why hello there,要么是 Goodbye,即如下两个语句:

st.write('Why hello there')

st.write('Goodbye')

需要注意的是,以上 st.write 语句是在 if 和 else 条件分支内的,才能达到前述显示不同消息的效果。

接下来做什么?

现在你已经在本地创建好了 Streamlit 应用,是时候将其部署到 Streamlit Community Cloud 了,我们在接下来的挑战中很快就会介绍到。

因为这是你挑战的第一周,因此我们在网页中直接提供了完整的代码(正如前面的代码框所示)和解决方案(示例程序)。

在接下来的挑战中,我们更推荐你首先尝试靠自己搭建 Streamlit 应用。

如果你卡住了,不必担心,可以随时看一眼解决方案是如何实现的。

参考资料

有关 st.button 的说明详见 Streamlit API 文档。

🗓️ 天 5

st.header

以标题格式显示文本。

import streamlit as st

st.header('This is a header with a divider', divider='rainbow')
st.header('_Streamlit_ is :blue[cool] :sunglasses:')

st.subheader 

st.write

st.write 能够在 Streamlit 应用中输出文字等内容。

除了能够输出文字,st.write() 命令还能够输出...

  • 输出字符串,类似于 st.markdown()
  • 输出 Python 的 dict 字典对象
  • 输出 pandas DataFrame,将数据框显示为表格
  • 输出用 matplotlibplotlyaltairgraphvizbokeh 等库所作的图表
  • 以及更多!(见 API 文档中对 st.write 的描述

我们要做什么?

我们今天要搭建一个简单的应用,来展示使用 st.write() 命令输出各种文字、数字、数据框和图表。

示例应用

我们将要部署的 Streamlit 应用应该看起来和下面链接中的这个差不多:

代码

以下是如何使用 st.write 的代码:

import numpy as np
import altair as alt
import pandas as pd
import streamlit as st

st.header('st.write')

# 样例 1

st.write('Hello, *World!* :sunglasses:')

# 样例 2

st.write(1234)

# 样例 3

df = pd.DataFrame({
     'first column': [1, 2, 3, 4],
     'second column': [10, 20, 30, 40]
     })
st.write(df)

# 样例 4

st.write('Below is a DataFrame:', df, 'Above is a dataframe.')

# 样例 5

df2 = pd.DataFrame(
     np.random.randn(200, 3),
     columns=['a', 'b', 'c'])
c = alt.Chart(df2).mark_circle().encode(
     x='a', y='b', size='c', color='c', tooltip=['a', 'b', 'c'])
st.write(c)

逐行解释

创建 Streamlit 应用时要做的第一件事就是将 streamlit 库导入为 st

import streamlit as st

然后紧跟着的是应用的标题文字:

# header 是应用的标题名称
st.header('st.write')

样例 1-字符串类型

st.write 的基本用法就是现实文字和使用 Markdown 语法的文本:

st.write('Hello, *World!* :sunglasses:')

样例 2-数字类型

前面提到,st.write 还能够输出其他数据类型,比如数字:

st.write(1234)

样例 3-字典类型

数据框也能够通过如下语句显示:

df = pd.DataFrame({
     'first column': [1, 2, 3, 4],
     'second column': [10, 20, 30, 40]
     })
st.write(df)

样例 4--字符串和字典类型相结合

你也能传入多个参数,比如:

st.write('Below is a DataFrame:', df, 'Above is a dataframe.')

样例 5-图表数据的打印

最后,你也可以显示各种图表,只需传入图表对象即可:

#用pandsa来构建一个随机数据组,
df2 = pd.DataFram
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值