摘要
从光学卫星数据监测农田物候仍然是一项具有挑战性的任务,因为云层和大气伪影的影响。因此,需要采取措施来克服这些挑战,以更好地了解作物动态。云计算平台的出现,如谷歌地球引擎(GEE),使我们能够提出一个哨兵-2(S2)物候端到端处理链。为此,实施了以下流程: (1) 构建优化了主动学习的混合高斯过程回归(GPR)作物特征检索模型,(2) 在GEE上实施这些模型,(3) 通过GPR拟合生成这些作物特征的时空连续地图和时间序列,并最终,(4) 计算土地表面物候(LSP)指标,如季节开始(SOS)或季节结束(EOS)。总体而言,达到了从良好到高的性能,特别是在估计冠层水平特征(如叶面积指数(LAI)和冠层叶绿素含量)方面,标准化均方根误差(NRMSE)分别为9%和10%。通过GPR填补的S2时间序列,重建了整个图块,并在西班牙卡斯蒂利亚和莱昂的农业区域展示了结果地图,那里有作物日历数据可用于评估从作物特征推导的LSP指标的有效性。此外,基于归一化差异植被指数(NDVI)推导的物候被用作参考。NDVI不仅被证明是计算LSP指标的稳健指标,还用于展示定量特征产品的良好物候质量。得益于GEE框架,所提出的工作流程可以在世界任何地方和任何时间窗口实现,从而代表了卫星数据处理范式的转变。我们预计,生成的LSP指标可以为作物季节性提供有意义的见解。
函数
matrixTranspose(axis1, axis2)
Transposes two dimensions of each array pixel.
Arguments:
this:input&nb