基于多源遥感数据的生物量估算工作流程
技术路线概述
本工作流程整合NASA GEDI激光雷达数据作为地面真实值,结合Sentinel-1/2卫星数据作为预测变量,构建机器学习模型实现大尺度生物量精确估算。本部分主要时3个部分,也是由3部分代码构成。第一部分时用来实现数据下载,第二部分时数据预处理,第三部分时机型XGboost的生物量预测。
核心处理流程
1. 数据收集阶段
- 数据源获取:从Google Earth Engine平台获取GEDI L4A生物量产品、Sentinel-1 SAR数据和Sentinel-2多光谱数据
- 空间裁剪:将所有数据统一裁剪至研究区域范围(AOI)
- 数据导出:保存原始数据集供后续处理使用
2. 数据预处理阶段
- 空间对齐:将所有数据集重采样至100米统一分辨率
- 数据清洗:基于土地利用类型等质量控制指标剔除无效像元
- 特征整合:将Sentinel-1/2各波段数据合并为多维特征数据集
- 数据集划分:按比例划分训练集与验证集(通常7:3)