GEE生物量:基于GEDI和XGboost机器学习方法的森林生物量预测

基于多源遥感数据的生物量估算工作流程

技术路线概述

本工作流程整合NASA GEDI激光雷达数据作为地面真实值,结合Sentinel-1/2卫星数据作为预测变量,构建机器学习模型实现大尺度生物量精确估算。本部分主要时3个部分,也是由3部分代码构成。第一部分时用来实现数据下载,第二部分时数据预处理,第三部分时机型XGboost的生物量预测。

核心处理流程

1. 数据收集阶段

  • 数据源获取:从Google Earth Engine平台获取GEDI L4A生物量产品、Sentinel-1 SAR数据和Sentinel-2多光谱数据
  • 空间裁剪:将所有数据统一裁剪至研究区域范围(AOI)
  • 数据导出:保存原始数据集供后续处理使用

2. 数据预处理阶段

  • 空间对齐:将所有数据集重采样至100米统一分辨率
  • 数据清洗:基于土地利用类型等质量控制指标剔除无效像元
  • 特征整合:将Sentinel-1/2各波段数据合并为多维特征数据集
  • 数据集划分:按比例划分训练集与验证集(通常7:3)

### GEE(Google Earth Engine)在森林生物量计算与分析中的应用 #### 平台概述 Google Earth Engine (GEE) 是一种强大的云计算平台,能够高效处理大规模地理空间数据集。它提供了丰富的遥感图像库以及内置的工具算法,使得研究人员能够在无需下载大量数据的情况下完成复杂的环境监测任务。 #### 数据获取与预处理 为了估算全球或区域范围内的森林生物量,通常需要依赖高分辨率卫星影像其他辅助数据源。这些数据可以通过 GEE 的公共数据目录轻松访问,例如 Landsat、Sentinel MODIS 系列产品[^1]。 在实际操作中,数据预处理是一个重要环节,包括但不限于辐射校正、大气校正、去云处理以及重采样等步骤。这一步骤对于提高后续建模精度至关重要[^2]。 #### 生物量估测方法 目前主流的方法可分为两类:一是基于经验关系式的间接法;二是结合机器学习技术的数据驱动型方法。前者主要依靠植被指数(如NDVI)、雷达后向散射系数等因素建立回归方程来推导目标参数值;后者则充分利用随机森林XGBoost 或神经网络等先进算法挖掘隐藏于海量观测记录背后的复杂模式特征[^4]。 #### 结果验证与不确定性评估 任何科学结论都需经过严格检验才能被广泛接受,在此背景下,交叉验证成为不可或缺的一环。通过比较预测值同实测值之间的差异程度衡量模型性能优劣的同时也要关注其稳健性泛化能力如何随输入条件变化而改变的情况[^3]。 #### 可视化展示 最后阶段涉及成果呈现形式的选择问题。借助 GEE 自带的地图服务或者第三方插件可以生成直观易懂的空间分布图谱供决策者参考采纳实施相应政策措施加以应对当前面临的生态危机挑战。 ```javascript // 示例代码片段用于加载并显示特定地区的 NDVI 图层 var dataset = ee.ImageCollection('MODIS/061/MOD13Q1') .filterDate('2020-01-01', '2020-12-31'); var ndvi = dataset.select('NDVI').mean(); Map.setCenter(6.746, 46.529, 6); Map.addLayer(ndvi, {min: 0, max: 9000}, 'NDVI'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值