简介
Farmscapes 2020 数据集为英格兰农业景观中的三种关键半自然特征(树篱、林地和石墙)提供了高分辨率 (25 厘米) 概率地图。此数据集是与牛津 Leverhulme 自然恢复中心合作开发的,可作为多种应用(包括景观恢复、生物多样性监测和生态连通性分析)的基准。
该数据集是通过将视觉 Transformer 模型应用于高分辨率航空影像的镶嵌图生成的,并使用大量人工注释的标签进行训练。输出包含三个不同的概率层,每个特征类一个。这种概率格式允许用户应用自定义阈值来生成适合其特定分析要求的二元特征图。
限制
地理范围:在密集城市环境和山区,模型性能会降低,因为训练数据主要侧重于乡村景观,而这些环境在训练数据中代表性不足。
时间准确性:源影像的拍摄时间介于 2018 年至 2020 年之间。 因此,该数据集未考虑自此期间以来发生的格局变化。
特定类别的性能:与林地和树篱相比,石墙类别的准确率较低,这是训练数据中类别严重不平衡所致。
欧洲数据集
除了英格兰的主要数据集之外,我们还生成了欧洲范围的初步版本。此数据集未经过相同的定量验证,应视为实验性数据集。 您可以提交此表单来申请访问此数据集。
目录所有者
Nature Trace
数据集可用性
2018-01-01T00:00:00Z–2020-12-31T23:59:59Z
数据集提供商
Google
Earth Engine 代码段
ee.ImageCollection(“projects/nature-trace/assets/farmscapes/england_v1_0”)
像素大小 | 0.25 米 |
---|
名称 | 最小值 | 最大值 | 缩放 | 像素尺寸 | 说明 |
---|---|---|---|---|---|
B0 | 0 | 250 | 0.004 | 米 | 树篱概率(已缩放至 [0-250]) |
B1 | 0 | 250 | 0.004 | 米 | 石墙概率(缩放为 [0-250]) |
B2 | 0 | 250 | 0.004 | 米 | 森林/树木概率(缩放为 [0-250]) |
代码
var farmscapes =
ee.ImageCollection('projects/nature-trace/assets/farmscapes/england_v1_0')
.mosaic();
Map.addLayer(farmscapes, {}, 'Raw probs', false);
var stone_wall = farmscapes.select(['B1']);
stone_wall = stone_wall.updateMask(stone_wall.gt(250 / 4));
Map.addLayer(
stone_wall, {palette: ['FFFFFF', '00FFFF'], min: 0, max: 250},
'Stone wall');
var hedgerow = farmscapes.select(['B0']);
hedgerow = hedgerow.updateMask(hedgerow.gt(250 / 4));
Map.addLayer(
hedgerow, {palette: ['FFFFFF', 'c71585'], min: 0, max: 250}, 'Hedgerow');
var woodland = farmscapes.select(['B2']);
woodland = woodland.updateMask(woodland.gt(250 / 4));
Map.addLayer(
woodland, {palette: ['FFFFFF', '06402B'], min: 0, max: 250}, 'Woodland');
var lon = -1.43;
var lat = 52.973;
Map.setCenter(lon, lat, 15);
结果
引用:
Michelangelo Conserva、Alex Wilson、Charlotte Stanton、Vishal Batchu、Varun Gulshan,“Mapping Farmed Landscapes from Remote Sensing”(正在审核中)。doi:10.48550/arXiv.2506.13993,