贝叶斯公式

本文深入解析了贝叶斯公式的核心概念,包括先验概率、后验概率及全概率公式。通过一个公园中性别与穿着凉鞋概率的案例,详细展示了如何运用贝叶斯公式进行概率估计和决策制定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、贝叶斯要解决的问题

贝叶斯公式就是已知先验概率,估计后验概率。

 

2、贝叶斯公式

条件概率公式:

全概率公式:

贝叶斯公式:

其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率;p(x)为全概率。

有了这个后验概率,我们就可以对样本进行分类,后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。

 

3、案例:

已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1

问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?(已知先验概率,求后验概率问题)

设:w1=男性、w2=女性、x=穿凉鞋

由已知可得到:

男性和女性穿凉鞋相互独立,所以 : (全概率公式)

由贝叶斯公式,可得到:

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值