FCSS: Fully Convolutional Self-Similarity for Dense Semantic Correspondence

本文探讨了传统方法在计算图像局部自相似性(LSS)时存在的问题,即无法捕获语义相似性。为解决这一问题,作者提出了一种基于弱监督学习的方法。该方法利用A->B和B->A的一致性作为正样本,其余视为负样本,以此训练神经网络CNN来增强图像间的语义理解。这种方法有望在图像分析和比较中提供更精确的相似性度量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一篇通过神经网络CNN来计算图像间自相似的文章;

3.2:
传统方法计算LSS无法得到语义相似性;
我们的方法:
在这里插入图片描述
在这里插入图片描述
该方法采用弱监督,满足A->B,B->A一致性的视为正样本,其它视为负样本
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值