视觉SLAM笔记(29) g2o

本文介绍了视觉SLAM中的图优化理论,通过图优化将非线性最小二乘问题可视化。g2o作为一个通用的图优化库,用于SLAM中的优化问题。文章详细讲解了g2o的编译与安装过程,并通过曲线拟合的例子展示了如何将问题抽象为图优化,定义顶点和边类型,构建并优化图。在实践中,作者遇到并解决了静态库路径配置的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1. 图优化

图优化是一种将非线性优化与图论结合起来的理论
因此在使用它之前,需要花一点篇幅介绍一个图优化理论

视觉SLAM笔记(27) 非线性最小二乘 介绍了非线性最小二乘的求解方式
它们是由很多个误差项之和组成的

然而,仅有一组优化变量和许多个误差项,并 不清楚它们之间的关联
比方说,某一个优化变量 x x xj 存在于多少个误差项里?
能保证对它的优化是有意义的吗?
进一步,希望能够直观地看到该优化问题长什么样
于是,就说到了图优化,就是把优化问题表现成图(Graph) 的一种方式

这里的图是图论意义上的图
一个图由若干个顶点(Vertex) ,以及连接着这些节点的边(Edge) 组成
进而,用顶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氢键H-H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值