1、参数的具体含义及其重要性
-
epoch: 训练迭代次数,表示模型已经进行了多少轮的训练。这是模型训练的基本计数单位,对于跟踪训练进度至关重要。
-
train/box_loss: 训练过程中边界框(bounding box)预测的损失值。这反映了模型在定位对象方面的能力。
-
train/obj_loss: 训练过程中对象存在性(objectness)预测的损失值。这涉及模型判断图像中是否存在特定对象的能力。
-
train/cls_loss: 训练过程中类别(classification)预测的损失值。这关注于模型识别对象类别的准确性。
-
metrics/precision: 精确度,表示预测为正的样本中真正为正的比例。高精度表示模型具有较少的假阳性预测。
-
metrics/recall: 召回率,表示实际为正的样本中被正确预测为正的比例。高召回率意味着模型能够找到大部分真实对象。
-
metrics/mAP_0.5: 平均精度(mean Average Precision)@ IoU=0.5,这是一个综合性能指标,反映模型在所有类别上的平均检测精度。
-
metrics/mAP_0.5:0.95: 平均精度@多个IoU阈值(从0.5到0.95),提供更全面的模型定位能力评估。
-
val/box_loss: 验证集上的边界框损失值,用于评估模型在未见过的数据上的定位性能。
-
val/obj_loss: 验证集上的对象损失值,评估模型在未见过的数据上检测对象存在的能力。