拉格朗日插值

拉格朗日插值法实现

直接上公式
就是这个公式

在这里插入图片描述

简单的讲 ,这个玩意就是在给你若干个 f(xi) = yi 的结果 算出f(k) 的结果

//最朴素的实现方法 验证下这个公式的结果 
#include <bits/stdc++.h>
using namespace  std;
int main(){
    int n;
    //输入n 个点的坐标
    cin>>n;
    vector< pair<double ,double > > node;
    for(int i = 0 ; i < n; ++i){
        int x,y;
        cin>>x>>y;
        node.push_back(make_pair(y,x));
    }
    while(1){
        double k;
        //f(k) 的 k
        cin>>k;
        if(k == 0 ){
            break;
        }
        double result = 0 ;
        for(int i = 0 ; i < node.size() ; ++i){
            double tem = node[i].first;
            for(int j = 0 ; j < node.size() ; ++j){
                if(i == j){
                    continue;
                }
                tem *= (k - node[j].second) / (node[i].second - node[j].second) ;
            }
            result += tem;
        }
        cout<<"K: " << k  << "  result : " <<result<<endl;
    }
}

这是输入 显而易见 f(x) = x^2
3
1 1
2 4
3 9
3
4
5

这是输出 显而易见 这个公式很好用
K: 3 result : 9
K: 4 result : 16
K: 5 result : 25

//todo. 关于程序实现增加一些乘法逆元

关于证明 暂时还不会

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值