Jetson-AGX-Orin 系统多种方式克隆还原

Jetson-AGX-Orin 系统多种方式克隆还原

在一台设备调试完成后,可将一个设备的系统克隆,在批量还原到其他设备上,以达到批量部署的目的。 Jetson-AGX-Orin设备的系统克隆还原可采用多种方式。

1、采用Linux_for_Tegra下面的flash脚本进行克隆还原
克隆,Orin进入recovery模式,USB线连接Orin设备和电脑
cd Linux_for_Tegra
#克隆命令
sudo ./flash.sh -r -k APP -G backup.img jetson-agx-orin-devkit mmcblk0p1

克隆完成后在Linux_for_Tegra目录下生成backup.img 和 backup.img.raw。

还原,Orin进入recovery模式,USB线连接Orin设备和电脑

将上述克隆得到的backup.img 移动到Linux_for_Tegra/bootloader,并重命名为system.img

mv backup.img Linux_for_Tegra/bootloader/system.img

cd Linux_for_Tegra
#还原命令
sudo ./flash.sh -r jetson-agx-orin-devkit  mmcblk0p1

还原的镜像非常大的时候,Orin还原温度会很高,需要给其降温,不然还原会失败。

2、采用Linux_for_Tegra/tools/backup_restore进行克隆还原
克隆,Orin进入recovery模式,USB线连接Orin设备和电脑
cd Linux_for_Tegra
#克隆命令
sudo ./tools/backup_restore/l4t_backup_restore.sh -b jetson-agx-orin-devkit

生成的镜像在Linux_for_Tegra/tools/backup_restore/images

还原,Orin进入recovery模式,USB线连接Orin设备和电脑

保证待还原的经常在Linux_for_Tegra/tools/backup_restore/images目录下

cd Linux_for_Tegra
#还原命令
sudo ./tools/backup_restore/l4t_backup_restore.sh -r jetson-agx-orin-devkit
3、采用dd命令将rootfs根文件系统克隆到U盘或SSD中并进行还原
克隆,Orin连接键盘和鼠标

插入U盘,将U盘设备挂载到/mnt

#在orin终端输入以下命令
sudo su
echo u > /proc/sysrq-trigger
dd if=/dev/mmcblk0p1 of=/mnt/backup.img.raw

在U盘就得到克隆的镜像文件backup.img.raw

将U盘插入电脑,将镜像转换成img格式的镜像

cd /Linux_for_Tegra/bootloader/
sudo ./mksparse -v --fillpattern=0 U盘挂载路径/backup.img.raw ./system.img
还原,Orin进入recovery模式,USB线连接Orin设备和电脑
cd /Linux_for_Tegra/bootloader/
sudo ./flash.sh -r jetson-agx-orin-devkit  mmcblk0p1
4、采用dd命令和ssh工具通过网络进行克隆,并进行还原
克隆,Orin通过网线连接电脑
ssh orin_user@Orin_ip
sudo su
echo u > /proc/sysrq-trigger
dd if=/dev/mmcblk0p1 | ssh 电脑_user@电脑_ip dd of=/home/电脑_user/backup.img.raw

将镜像转换成img格式的镜像

cd /Linux_for_Tegra/bootloader/
sudo ./mksparse -v --fillpattern=0 /home/电脑_user/backup.img.raw ./system.img
还原,Orin进入recovery模式,USB线连接Orin设备和电脑
cd /Linux_for_Tegra/bootloader/
sudo ./flash.sh -r jetson-agx-orin-devkit  mmcblk0p1
<think>我们正在Jetson AGX Orin设备上安装YOLOv9模型。由于YOLOv9是一个较新的模型,官方可能尚未提供针对Jetson平台的详细指南。但我们可以根据YOLOv5、YOLOv7和YOLOv8在Jetson上的安装经验来尝试。 步骤概述: 1. 系统准备:确保系统为最新,并安装必要的依赖。 2. 安装Anaconda(可选,但推荐使用虚拟环境)。 3. 安装PyTorch for Jetson(注意:必须使用ARM架构的版本,不能使用x86版本)。 4. 安装其他依赖(如OpenCV, numpy等)。 5. 下载YOLOv9源码和预训练权重。 6. 安装YOLOv9的特定依赖。 7. 测试YOLOv9。 详细步骤: 1. 系统准备 - 更新系统: ```bash sudo apt update sudo apt upgrade -y ``` - 安装必要依赖: ```bash sudo apt install -y build-essential cmake unzip pkg-config libjpeg-dev libpng-dev libtiff-dev libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libxvidcore-dev libx264-dev libgtk-3-dev libcanberra-gtk* libatlas-base-dev gfortran python3-dev python3-pip ``` 2. 安装Anaconda(可选) - 由于Jetson AGX Orin是ARM架构,不能安装常规的x86 Anaconda。我们可以安装Miniforge(专为ARM设计): ```bash wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-aarch64.sh bash Miniforge3-Linux-aarch64.sh ``` - 安装完成后,创建并激活虚拟环境(例如命名为yolov9): ```bash conda create -n yolov9 python=3.8 conda activate yolov9 ``` 3. 安装PyTorch for Jetson - 根据JetPack版本选择对应的PyTorch。首先查看JetPack版本: ```bash dpkg -l | grep nvidia-jetpack ``` - 假设JetPack版本为5.1.2,则可以从NVIDIA官网下载对应的PyTorch。通常,我们可以从NVIDIA的论坛或PyTorch for Jetson的仓库获取安装命令。 - 例如,对于JetPack 5.1.2(对应L4T 35.3.1),可以安装以下预编译的PyTorch(版本1.13.0): ```bash wget https://nvidia.box.com/shared/static/ssf2v7pf5i18908xgeva0ki5vxod55cw.whl -O torch-1.13.0-cp38-cp38-linux_aarch64.whl pip install torch-1.13.0-cp38-cp38-linux_aarch64.whl ``` - 安装torchvision,同样需要对应版本。例如,对于PyTorch 1.13.0,torchvision 0.14.0: ```bash sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev git clone --branch v0.14.0 https://github.com/pytorch/vision torchvision cd torchvision export BUILD_VERSION=0.14.0 python3 setup.py install --user cd .. ``` 4. 安装其他依赖 - 安装基本库: ```bash pip install numpy pandas matplotlib tqdm opencv-python ``` 5. 下载YOLOv9源码和权重 - 克隆YOLOv9的官方仓库(注意:目前YOLOv9的官方仓库是https://github.com/WongKinYiu/yolov9): ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 ``` - 下载预训练权重(例如yolov9-c.pt): ```bash wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt -P weights/ ``` 6. 安装YOLOv9的特定依赖 - 安装requirements.txt中的依赖(注意:可能需要修改requirements.txt,避免重新安装PyTorch): ```bash # 首先,注释掉requirements.txt中torch和torchvision的行(因为我们已经安装了特定版本) sed -i 's/^torch/# &/' requirements.txt sed -i 's/^torchvision/# &/' requirements.txt # 然后安装 pip install -r requirements.txt ``` - 另外,YOLOv9可能需要其他依赖,如thop(用于计算FLOPs)等,requirements.txt中应该已包含。 7. 测试YOLOv9 - 使用detect.py进行测试: ```bash python detect.py --weights weights/yolov9-c.pt --source data/images/bus.jpg ``` - 如果运行成功,将在runs/detect/exp目录下看到检测结果。 注意事项: - 如果遇到字符集错误(如之前YOLOv7中出现的'charset_normalizer'错误),可以尝试: ```bash pip install --upgrade charset-normalizer ``` - 如果内存不足,可以尝试减小batch size或图像尺寸(通过--img参数)。 - 对于TensorRT加速,可以参考YOLOv5或YOLOv8的TensorRT部署方法,但需要等待官方或社区提供YOLOv9的TensorRT实现。 由于YOLOv9刚发布,可能遇到各种问题,请及时关注官方仓库的更新和issue。 引用说明: 本文参考了YOLOv5、YOLOv7和YOLOv8在Jetson AGX Orin上的部署经验[^1][^2][^3][^4]。 §§相关问题§§ 1. YOLOv9在Jetson AGX Orin上的推理速度如何? 2. 如何将YOLOv9模型转换为TensorRT引擎以提高推理速度? 3. 如何在Jetson AGX Orin上训练YOLOv9模型?</think>### Jetson AGX Orin 安装 YOLOv9 指南 根据 Jetson AGX Orin 部署 YOLO 系列模型的通用流程[^1][^2][^3][^4],以下是安装 YOLOv9 的详细步骤: #### 1. 系统准备 ```bash sudo apt update sudo apt upgrade -y sudo apt install -y build-essential cmake libopenblas-dev liblapack-dev libjpeg-dev zlib1g-dev ``` #### 2. 创建 Python 虚拟环境 ```bash conda create -n yolov9 python=3.8 conda activate yolov9 ``` #### 3. 安装 PyTorch for Jetson *根据 JetPack 版本选择 PyTorch (JetPack 5.1.2 示例)*: ```bash # 查看 JetPack 版本 dpkg -l | grep nvidia-jetpack # 输出示例: 5.1.2-b197[^4] # 安装对应 PyTorch (ARM64 版本) wget https://nvidia.box.com/shared/static/ssf2v7pf5i18908xgeva0ki5vxod55cw.whl -O torch-1.13.0-cp38-cp38-linux_aarch64.whl pip install torch-1.13.0-cp38-cp38-linux_aarch64.whl ``` #### 4. 安装 YOLOv9 依赖 ```bash git clone https://github.com/WongKinYiu/yolov9.git cd yolov9 # 修改 requirements.txt (避免覆盖 PyTorch) sed -i 's/^torch/#torch/' requirements.txt sed -i 's/^torchvision/#torchvision/' requirements.txt pip install -r requirements.txt ``` #### 5. 安装补充依赖 ```bash pip install seaborn thop pycocotools sudo apt install -y libjpeg-dev libopenmpi-dev # 解决常见依赖问题[^2] ``` #### 6. 下载预训练权重 ```bash wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt -P weights/ ``` #### 7. 验证安装 ```bash python detect.py --weights weights/yolov9-c.pt --source data/images/bus.jpg ``` *成功标志*:生成 `runs/detect/exp/` 结果图像 #### 常见问题解决 1. **字符集错误**: ```bash pip install --upgrade charset-normalizer # [^2] ``` 2. **CUDA 内存不足**: 在 `detect.py` 中添加: ```python import torch torch.cuda.empty_cache() ``` 3. **模型加载失败**: ```bash pip install --upgrade protobuf ``` #### 性能优化建议 1. **TensorRT 加速**:参考 YOLOv5 的 TensorRT 部署流程[^3] ```bash git clone https://github.com/wang-xinyu/tensorrtx ``` 2. **量化推理**:使用 FP16 模式 ```python model = torch.load('yolov9-c.pt', map_location=torch.device('cuda:0')).half() ``` > 注:YOLOv9 作为较新模型,需关注 GitHub 仓库的更新。若遇问题,可参考 YOLOv7 的部署经验[^2]和 Jetson 环境配置指南[^1][^4]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值