Java面试基础部分(高级篇)

本文深入讲解Java并发编程的基础知识,包括线程与进程的区别、线程的状态管理、多线程程序的设计方法、线程池的工作原理及配置策略等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

书接上回,继续更新,这次是Java面试基础部分的高级篇,之前还有初级篇,没看到的小伙伴可以去看下。

2.1、线程和锁

2.1.1、线程和进程区别

进程是程序的一次动态执行过程,它需要经历从代码加载,代码执行到执行完毕的一个完整的过程,这个过程也是进程本身从产生,发展到最终消亡的过程。多进程操作系统能同时达运行多个进程(程序),由于 CPU 具备分时机制,所以每个进程都能循环获得自己的CPU 时间片。由于 CPU 执行速度非常快,使得所有程序好像是在同时运行一样。

多线程是实现并发机制的一种有效手段。进程和线程一样,都是实现并发的一个基本单位。线程是比进程更小的执行单位,线程是进程的基础之上进行进一步的划分。所谓多线程是指一个进程在执行过程中可以产生多个更小的程序单元,这些更小的单元称为线程,这些线程可以同时存在,同时运行,一个进程可能包含多个同时执行的线程。

举一个例子来说:使用电脑时运行着QQ、安全卫士、音乐播放器、浏览器等,这些都是进程,而QQ中还有接收消息、发送消息等,这些都是线程。

2.1.2、线程的几种状态

任何线程一般具有5种状态,即创建,就绪,运行,阻塞,终止。

①创建状态(NEW):在程序中用构造方法创建了一个线程对象后,新的线程对象便处于新建状态,此时它已经有了相应的内存空间和其他资源,但还处于不可运行状态。新建一个线程对象可采用Thread 类的构造方法来实现,例如 “Thread thread=new Thread()”。

②可运行(就绪)状态(RUNNABLE):新建线程对象后,调用该线程的 start() 方法就可以启动线程。当线程启动时,线程进入就绪状态。此时,线程将进入线程队列排队,等待 CPU 服务,这表明它已经具备了运行条件。

③运行状态(RUNNING):当就绪状态被调用并获得处理器资源时,线程就进入了运行状态。此时,自动调用该线程对象的 run() 方法。run() 方法定义该线程的操作和功能。

④阻塞状态(BLOCKED):一个正在执行的线程在某些特殊情况下,如被人为挂起或需要执行耗时的输入/输出操作,会让 CPU 暂时中止自己的执行,进入阻塞状态。在可执行状态下,如果调用sleep(),suspend(),wait() 等方法,线程都将进入阻塞状态,发生阻塞时线程不能进入排队队列,只有当引起阻塞的原因被消除后,线程才可以转入就绪状态。

⑤死亡状态(DEAD):线程调用 stop() 方法时或 run() 方法执行结束后,即处于死亡状态。处于死亡状态的线程不具有继续运行的能力。
线程的运行状态

2.1.3、Java 程序每次运行至少启动几个线程

至少两个线程,每当使用 Java 命令执行一个类时,实际上都会启动一个 JVM,每一个JVM实际上就是在操作系统中启动一个线程,Java 本身具备了垃圾的收集机制。所以在 Java 运行时至少会启动两个线程,一个是 main 线程,另外一个是垃圾收集线程。

2.1.4、sleep()方法和wait()方法有什么区别?

sleep()方法是线程类的静态方法,调用此方法会让当前线程暂停执行指定的时间,将执行机会(CPU)让给其他线程,但是对象的锁依然保持,因此休眠时间结束后会自动恢复(线程回到就绪状态,请参考第66题中的线程状态转换图)。

wait()是Object类的方法,调用对象的wait()方法导致当前线程放弃对象的锁(线程暂停执行),进入对象的等待池(wait pool),只有调用对象的notify()方法(或notifyAll()方法)时才能唤醒等待池中的线程进入等锁池(lock pool),如果线程重新获得对象的锁就可以进入就绪状态。

2.1.5、sleep()方法和yield()方法有什么区别?

① sleep()方法给其他线程运行机会时不考虑线程的优先级,因此会给低优先级的线程以运行的机会;yield()方法只会给相同优先级或更高优先级的线程以运行的机会;
② 线程执行sleep()方法后转入阻塞(blocked)状态,而执行yield()方法后转入就绪(ready)状态;
③ sleep()方法声明抛出InterruptedException,而yield()方法没有声明任何异常;
④ sleep()方法比yield()方法(跟操作系统CPU调度相关)具有更好的可移植性。

2.1.6、多线程程序有几种实现方式

①继承Thread类

②实现Runnable接口

③实现Callable接口

2.1.7、并发编程安全问题的两大核心和三条性质

JMM抽象内存模型以及happens-before规则

三条性质:原子性,有序性和可见性

JMM抽象内存模型

JMM(Java内存模型,Java Memory Model)本身是一种抽象的概念,并不是真实存在的,它描述的是一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段,静态字段和构成数组对象的元素)的访问方式。

JMM关于同步的规定:

1、线程解锁前,必须把共享变量的值刷新回主内存中。

2、线程加锁前,必须读取主内存的最新值到自己的工作内存。

3、加锁解锁是同一把锁。

由于JVM运行程序的实体是线程,而每个线程创建时JVM都会为其创建一个工作内存(有些地方称为栈空间),工作内存是每个线程的私有数据区域,而Java内存模型中规定所有变量都存储在主内存,主内存是共享内存区域,所有线程都可以访问,但线程对变量的操作(读取赋值等)必须在工作内存中进行,首先将变量从主内存拷贝到自己的工作内存空间,然后对变量进行操作,操作完成后再将变量写回主内存,不能直接操作主内存中的变量,各个线程中的工作内存中存储着主内存中的变量拷贝副本,因此不同的线程间无法访问对方的工作内存,线程间的通信(传值)必须通过主内存来完成,其简要访问过程如下图:
在这里插入图片描述
在这里插入图片描述
happens-before规则:

判断数据是否存在竞争、线程是否安全的主要依据。

happens-before关系定义如下:

①程序顺序规则:一个线程中的每一个操作,happens-before于该线程中的任意后续操作。
②监视器规则:对一个锁的解锁,happens-before于随后对这个锁的加锁。
③volatile规则:对一个volatile变量的写,happens-before于任意后续对一个volatile变量的读。
④传递性:若果A happens-before B,B happens-before C,那么A happens-before C。
⑤线程启动规则:Thread对象的start()方法,happens-before于这个线程的任意后续操作。
⑥线程终止规则:线程中的任意操作,happens-before于该线程的终止监测。我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行。
⑦线程中断操作:对线程interrupt()方法的调用,happens-before于被中断线程的代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测到线程是否有中断发生。
对象终结规则:一个对象的初始化完成,happens-before于这个对象的finalize()方法的开始。

1、可见性
各个线程对主内存中共享变量的操作都是各个线程各自拷贝到自己的工作内存进行操作后再写回到主内存中的。

2、原子性

原子性是指一个操作是不可中断的,要么全部执行成功要么全部执行失败。

3、有序性

计算机在执行程序时,为了提高性能,编译器和处理器常常会对指令做重排,一般分为以下3种:
在这里插入图片描述
单线程环境里面确保程序最终执行结果和代码顺序执行的结果一致。
处理器在进行重排序时必须要考虑指令之间的数据依赖性。
多线程环境中线程交替执行,由于编译器优化重排的存在,两个线程中使用的变量能否保证一致性是无法确定的,结果无法预测。

2.1.8、ThreadLocal 是什么?有哪些使用场景?

ThreadLocal 是线程本地存储,在每个线程中都创建了一个 ThreadLocalMap 对象,每个线程可以访问自己内部 ThreadLocalMap 对象内的 value。

经典的使用场景是为每个线程分配一个 JDBC 连接 Connection。这样就可以保证每个线程的都在各自的 Connection 上进行数据库的操作,不会出现 A 线程关了 B线程正在使用的 Connection; 还有 Session 管理等问题。

使用案例:

public class TestThreadLocal {
	//线程本地存储变量
	private static final ThreadLocal<Integer> THREAD_LOCAL_NUM = new ThreadLocal<Integer>() {
		@Override
		protected Integer initialValue() {
			return 0;
		}
	};
	public static void main(String[] args) {
		for (int i = 0; i < 3; i++) {//启动三个线程
			Thread t = new Thread() {
				@Override
				public void run() {
					add10ByThreadLocal();
				}
			};
			t.start();
		}
	}
	/**
	 * 线程本地存储变量加 5
	 */
	private static void add10ByThreadLocal() {
		for (int i = 0; i < 5; i++) {
			Integer n = THREAD_LOCAL_NUM.get();
			n += 1;
			THREAD_LOCAL_NUM.set(n);
			System.out.println(Thread.currentThread().getName() + " : ThreadLocal num=" + n);
		}
	}
}

打印结果:启动了 3 个线程,每个线程最后都打印到 “ThreadLocal num=5”,而不是 num 一直在累加直到值等于 15

Thread-0 : ThreadLocal num=1
Thread-1 : ThreadLocal num=1
Thread-0 : ThreadLocal num=2
Thread-0 : ThreadLocal num=3
Thread-1 : ThreadLocal num=2
Thread-2 : ThreadLocal num=1
Thread-0 : ThreadLocal num=4
Thread-2 : ThreadLocal num=2
Thread-1 : ThreadLocal num=3
Thread-1 : ThreadLocal num=4
Thread-2 : ThreadLocal num=3
Thread-0 : ThreadLocal num=5
Thread-2 : ThreadLocal num=4
Thread-2 : ThreadLocal num=5
Thread-1 : ThreadLocal num=5

2.1.9、synchronized 底层实现原理

synchronized是关键字属于JVM层面

通过 monitorenter(进入) 和 monitorexit(退出) 进行加锁和解锁。

底层是通过monitor对象来完成,其实wait/notify等方法也依赖于monitor对象只有在同步块或方法中才能调wait/notify等方法。

如下代码:

package com.paddx.test.concurrent;

public class SynchronizedDemo {
    public void method() {
        synchronized (this) {
            System.out.println("Method 1 start");
        }
    }
}

反编译结果:
在这里插入图片描述

2.1.10、volatile了解过吗,使用场景有哪些?

volatile是Java虚拟机提供的轻量级的同步机制,synchronized是重锁。

volatile三大特性:

①保证可见性:

保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。

②保证顺序性(禁止指令重排):

在执行程序时为了提高性能,编译器和处理器通常会对指令做重排序:
(1)编译器重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序;
(2)处理器重排序。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序;
指令重排序对单线程没有什么影响,他不会影响程序的运行结果,但是会影响多线程的正确性,那么就需要禁止重排序。

③不保证原子性:

注意,是不保证原子性,volatile 只能保证对单次读/写的原子性。i++ 这种操作不能保证原子性。

举例:

一个变量i被volatile修饰,两个线程想对这个变量修改,都对其进行自增操作也就是i++,i++的过程可以分为三步,首先获取i的值,其次对i的值进行加1,最后将得到的新值写会到缓存中。
线程A首先得到了i的初始值100,但是还没来得及修改,就阻塞了,这时线程B开始了,它也得到了i的值,由于i的值未被修改,即使是被volatile修饰,主存的变量还没变化,那么线程B得到的值也是100,之后对其进行加1操作,得到101后,将新值写入到缓存中,再刷入主存中。根据可见性的原则,这个主存的值可以被其他线程可见。
问题来了,线程A已经读取到了i的值为100,也就是说读取的这个原子操作已经结束了,所以这个可见性来的有点晚,线程A阻塞结束后,继续将100这个值加1,得到101,再将值写到缓存,最后刷入主存,所以即便是volatile具有可见性,也不能保证对它修饰的变量具有原子性。

2.1.11、synchronized 和 Lock 有什么区别?

①用法区别:

synchronized:在需要同步的对象中加入此控制,synchronized可以加在方法上,也可以加在特定代码块中,括号中表示需要锁的对象。

lock:一般使用ReentrantLock类做为锁。在加锁和解锁处需要通过lock()和unlock()显示指出。所以一般会在finally块中写unlock()以防死锁。

②性能区别:

synchronized是托管给JVM执行的,而lock是java写的控制锁的代码。

在Java1.5中,synchronize是性能低效的。因为这是一个重量级操作,需要调用操作接口,导致有可能加锁消耗的系统时间比加锁以外的操作还多。相比之下使用Java提供的Lock对象,性能更高一些。

但是到了Java1.6,发生了变化。synchronize在语义上很清晰,可以进行很多优化,有适应自旋,锁消除,锁粗化,轻量级锁,偏向锁等等。导致在Java1.6上synchronize的性能并不比Lock差。官方也表示,他们也更支持synchronize,在未来的版本中还有优化余地。

2种机制的具体区别:
synchronized原始采用的是CPU悲观锁机制,即线程获得的是独占锁。独占锁意味着其他线程只能依靠阻塞来等待线程释放锁。而在CPU转换线程阻塞时会引起线程上下文切换,当有很多线程竞争锁的时候,会引起CPU频繁的上下文切换导致效率很低。

而Lock用的是乐观锁方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。乐观锁实现的机制就是CAS操作(Compare and Swap)。我们可以进一步研究ReentrantLock的源代码,会发现其中比较重要的获得锁的一个方法是compareAndSetState。这里其实就是调用的CPU提供的特殊指令。

现代的CPU提供了指令,可以自动更新共享数据,而且能够检测到其他线程的干扰,而 compareAndSet() 就用这些代替了锁定。这个算法称作非阻塞算法,意思是一个线程的失败或者挂起不应该影响其他线程的失败或挂起的算法。

③用途区别:

synchronized原语和ReentrantLock在一般情况下没有什么区别,但是在非常复杂的同步应用中,请考虑使用ReentrantLock,特别是遇到下面2种需求的时候。

1.某个线程在等待一个锁的控制权的这段时间需要中断
2.需要分开处理一些wait-notify,ReentrantLock里面的Condition应用,能够控制notify哪个线程
3.具有公平锁功能,每个到来的线程都将排队等候

下面细细道来……

先说第一种情况,ReentrantLock的lock机制有2种,忽略中断锁和响应中断锁,这给我们带来了很大的灵活性。比如:如果A、B 2个线程去竞争锁,A线程得到了锁,B线程等待,但是A线程这个时候实在有太多事情要处理,就是一直不返回,B线程可能就会等不及了,想中断自己,不再等待这个锁了,转而处理其他事情。这个时候ReentrantLock就提供了2种机制:可中断/可不中断
第一,B线程中断自己(或者别的线程中断它),但是ReentrantLock不去响应,继续让B线程等待,你再怎么中断,我全当耳边风(synchronized原语就是如此);
第二,B线程中断自己(或者别的线程中断它),ReentrantLock处理了这个中断,并且不再等待这个锁的到来,完全放弃。

2.1.14、什么是线程池

事先创建若干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。

2.1.15、创建线程池的几种方法,生产中一般选择哪种?

①newSingleThreadExecutor:创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

②newFixedThreadPool:创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

③newCachedThreadPool:创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。

④newScheduledThreadPool:创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

⑤newSingleThreadExecutor:创建一个单线程的线程池。此线程池支持定时以及周期性执行任务的需求。

生产中一般使用自定义的线程池
原因如下图:
在这里插入图片描述
阻塞队列默认创建长度为Integer.MAX_VALUE,大约为21亿。

如果在高并发的情况下,请求都会阻塞在队列中。

2.2.16、线程池的几种状态

与线程的状态类似:

Running、ShutDown、Stop、Tidying、Terminated。
在这里插入图片描述
1、RUNNING

(1) 状态说明:线程池处在RUNNING状态时,能够接收新任务,以及对已添加的任务进行处理。
(02) 状态切换:线程池的初始化状态是RUNNING。换句话说,线程池被一旦被创建,就处于RUNNING状态,并且线程池中的任务数为0!

2、 SHUTDOWN

(1) 状态说明:线程池处在SHUTDOWN状态时,不接收新任务,但能处理已添加的任务。
(2) 状态切换:调用线程池的shutdown()接口时,线程池由RUNNING -> SHUTDOWN。

3、STOP

(1) 状态说明:线程池处在STOP状态时,不接收新任务,不处理已添加的任务,并且会中断正在处理的任务。
(2) 状态切换:调用线程池的shutdownNow()接口时,线程池由(RUNNING or SHUTDOWN ) -> STOP。

4、TIDYING

(1) 状态说明:当所有的任务已终止,ctl记录的”任务数量”为0,线程池会变为TIDYING状态。当线程池变为TIDYING状态时,会执行钩子函数terminated()。terminated()在ThreadPoolExecutor类中是空的,若用户想在线程池变为TIDYING时,进行相应的处理;可以通过重载terminated()函数来实现。
(2) 状态切换:当线程池在SHUTDOWN状态下,阻塞队列为空并且线程池中执行的任务也为空时,就会由 SHUTDOWN -> TIDYING。
当线程池在STOP状态下,线程池中执行的任务为空时,就会由STOP -> TIDYING。

5、 TERMINATED

(1) 状态说明:线程池彻底终止,就变成TERMINATED状态。
(2) 状态切换:线程池处在TIDYING状态时,执行完terminated()之后,就会由 TIDYING -> TERMINATED。

2.2.17、是否用过线程池,有什么优势?

线程池做的工作主要是控制运行的线程数量,处理过程中将任务放入队列,然后在线程创建后启动这些任务,如果线程数量超过了最大数量,超出数量的线程排队等候,等其他线程执行完毕,再从队列中取出任务来执行。
主要特点:线程复用;控制最大并发数;管理线程。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等待线程创建就立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

2.2.18、线程池的几个重要参数介绍

七大参数

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

1、corePoolSize:线程池中的常驻核心线程数
(1)在创建了线程池后,当有请求任务来之后,就会安排池中的线程去执行请求任务,近似理解为今日当值线程
(2)当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中。
2、maximumPoolSize:线程池能够容纳同时执行的最大线程数,此值必须大于等于1
3、keepAliveTime:多余的空闲线程的存活时间。
当前线程池数量超过corePoolSize时,当空闲时间达到keepAliveTime值时,多余空闲线程会被销毁直到只剩下corePoolSize个线程为止
4、unit:keepAliveTime的单位。
5、workQueue:任务队列,被提交但尚未被执行的任务。
6、threadFactory:表示生成线程池中工作线程的线程工厂,用于创建线程一般默认的即可。
7、handler:拒绝策略,表示当队列满了并且工作线程大于等于线程池的最大线程数(maximumPoolSize)

2.1.19、线程池的底层工作原理

在这里插入图片描述
1、在创建了线程池后,等待提交过来的任务请求。

2、当调用execute()方法添加一个请求任务时,线程池会做如下判断:

2.1 如果正在运行的线程数量小于corePoolSize,那么马上创建线程运行这个任务;

2.2 如果正在运行的线程数量大于或等于corePoolSize,那么将这个任务放入队列;

2.3 如果这时候队列满了且正在运行的线程数量还小于maximumPoolSize,那么还是要创建非核心线程立刻运行这个任务;

2.4 如果队列满了且正在运行的线程数量大于或等于maximumPoolSize,那么线程池会启动饱和拒绝策略来执行。

3、当一个线程完成任务时,它会从队列中取下一个任务来执行。

4、当一个线程无事可做超过一定的时间(keepAliveTime)时,线程池会判断:如果当前运行的线程数大于corePoolSize,那么z这个线程就会被停掉。所以线程池的所有任务完成后它最终会收缩到corePoolSize的大小。

2.1.20、线程池的拒绝策略

拒绝策略:等待队列已经排满了,再也塞不下新任务了。同时,线程池中的max线程也达到了,无法继续为新任务服务。这时候我们就需要拒绝策略机制合理的处理这个问题。

JDK内置的拒绝策略
AbortPolicy(默认):直接抛出RejectedExcutionException异常阻止系统正常运行。
CallerRunsPolicy:“调用者运行”一种调节机制,该策略既不会抛弃任务,也不会抛出异常,而是将某些任务回退到调用者,从而降低新任务的流量。
DiscardOldestPolicy:抛弃队列中等待最久的任务,然后把当前任务加入队列中尝试再次提交当前任务。 (抛弃阻塞队列中等的最久的)
DiscardPolicy:直接丢弃任务,不予任何处理也不抛出异常。如果允许任务丢失,这是最好的一种方案。 (抛弃新来的并且超时的)
以上内置拒绝策略均实现了RejectedExecutionHandler接口。

2.1.21、合理配置线程池

Runtime.getRuntime().availableProcessors()得到核数,再具体分析线程数的使用
(1)CPU密集型
CPU密集的意思是该任务需要大量的运算,而没有阻塞,CPU一直全速运行。
CPU密集任务只有在真正的多核CPU上才可能得到加速(通过多线程),而在单核CPU上(悲剧吧?),无论你开几个模拟的多线程该任务都不可能得到加速,因为CPU总的运算能力就哪些。

CPU密集型任务配置尽可能少的线程数量:
一般公式:CPU核数+1个线程的线程池
(2)IO密集型
1 由于IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如CPU核数✖2
2 IO密集型,即该任务需要大量的IO,即大量的阻塞。
在单线程上运行IO密集型的任务会导致浪费大量的CPU运算能力浪费在等待。
所以在IO密集型任务中使用多线程可以大大的加速程序运行,即使在单核CPU上,这种加速主要就是利用了被浪费掉的阻塞时间。

IO密集型时,大部分线程都阻塞,故需要多配置线程数:
参考公式:CPU核数/(1-阻塞系数) 阻塞系数在0.8~0.9之间
比如8核CPU:8/(1-0.9)=80个线程数

2.1.22、各种锁解释

可重入锁、非可重入锁、乐观锁、悲观锁、自旋锁、适应性自旋锁、公平锁、非公平锁、共享锁、排他锁、轻锁、重锁
在这里插入图片描述
可重入锁:

可重入锁(也叫做递归锁),指的是同一线程外层函数获得锁之后,内层递归函数仍然能获取该锁的代码,在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。也就是说,线程可以进入任何一个它已经拥有的锁所同步着的代码块。

比如:进大门需要开锁,进厨房、卧室就不用再开锁,进了大门就可以进厨房、卧室……

ReentrantLock/Synchronized就是一个典型的可重入锁。可重入锁最大的作用是避免死锁

非可重入锁:

理解了可重入锁,就大致能理解非可重入锁,也就是每进入一个同步域都需要重新获取锁,即使这个锁是相同的。

比如:手机上解开了锁屏,但是还需要输入用户名密码登录微信、支付宝一样,解锁了手机不代表解锁了全部应用。

非可重入锁也叫自旋锁,应用在自旋锁中会详细说到。

乐观锁:

它假设多用户并发的事务在处理时不会彼此互相影响,各事务能够在不产生锁的情况下处理各自影响的 那部分数据。在提交数据更新之前,每个事务会先检查在该事务读取数据后,有没有其他事务又修改了该数据。如果其他事务有更新的话,正在提交的事务会进行回滚。

CAS就是乐观锁的一种实现。CAS在下面会有解释。

悲观锁:

它可以阻止一个事务以影响其他用户的方式来修改数据。如果一个事务执行的操作读某行数据应用了锁,那只有当这个事务把锁释放,其他事务才能够执行与该锁冲突的操作。

MySQL InnoDB中使用悲观锁。

自旋锁:

自旋锁(spinlock)是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU。
在这里插入图片描述
代码实现自旋锁:

import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicReference;
/**
 * 题目:实现一个自旋锁
 * 自旋锁好处:循环比较获取直到成功,没有类似wait的阻塞
 *
 * 通过CAS操作完成自旋锁,A线程先进来调用mylock方法自己持有锁5秒钟,B随后进来后发现
 * 当前有线程持有锁,不是null,所以只能通过自旋等待,直到A释放锁后B随后抢到
 */
public class SpinLockDemo {
    // 原子引用线程
    AtomicReference<Thread> atomicReference = new AtomicReference<>();
    public void myLock() {
        Thread thread = Thread.currentThread();
        System.out.println(thread.getName()+"\tcome in O(∩_∩)O");
        // 如果线程是null,就替换成自己的线程
        while (!atomicReference.compareAndSet(null, thread)) {

        }
    }
    public void myUnLock() {
        Thread thread = Thread.currentThread();
        atomicReference.compareAndSet(thread, null);
        System.out.println(thread.getName() + "\tinvoked myUnLock()");
    }

    public static void main(String[] args) {
        SpinLockDemo spinLockDemo = new SpinLockDemo();
        new Thread(() -> {
            spinLockDemo.myLock();
            try {
                TimeUnit.SECONDS.sleep(5);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            spinLockDemo.myUnLock();
        }, "t1").start();
        try {
            TimeUnit.SECONDS.sleep(5);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        new Thread(() -> {
            spinLockDemo.myLock();
            try {
                TimeUnit.SECONDS.sleep(5);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            spinLockDemo.myUnLock();
        }, "t2").start();
    }
}

但,自旋锁也有缺点,它不能代替阻塞。自旋等待虽然避免了线程切换的开销,但它要占用处理器时间。如果锁被占用的时间很短,自旋等待的效果就会非常好。反之,如果锁被占用的时间很长,那么自旋的线程只会白浪费处理器资源。所以,自旋等待的时间必须要有一定的限度,如果自旋超过了限定次数(默认是10次,可以使用-XX:PreBlockSpin来更改)没有成功获得锁,就应当挂起线程。

适应性自旋锁:

自适应意味着自旋的时间(次数)不再固定,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后尝试获取这个锁时将可能省略掉自旋过程,直接阻塞线程,避免浪费处理器资源。

公平锁:

是指多个线程按照申请锁的顺序来获取锁,类似排队打饭,先来后到。

代码创建公平锁:

Lock lock = new ReentrantLock(true);

非公平锁:

是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁,在高并发的情况下,有可能造成优先级反转或者饥饿现象。

代码创建非公平锁:

Lock lock = new ReentrantLock();

共享锁:

指该锁可被多个线程所持有。

ReentrantReadWriteLock其读锁是共享锁。

读锁的共享锁可保证并发读是非常高效的,读写,写读,写写的过程是互斥的。

排他锁:

指该锁一次只能被一个线程所持有。对ReentrantLock和Synchronized而言都是独占锁。

写锁都是排他锁。

轻锁:

①轻量级锁每次退出同步块都需要释放锁。

②每次进入退出同步块都需要CAS更新对象头。

③争夺轻量级锁失败时,自旋尝试抢占锁。

轻量锁适合在竞争情况下使用,其自旋锁可以保证响应速度快,但自旋操作会占用CPU,所以一些计算时间长的操作不适合使用轻量级锁。

重锁:

竞争失败后,线程阻塞,释放锁后,唤醒阻塞的线程,不使用自旋锁,不会那么消耗CPU,所以重量级锁适合用在同步块执行时间长的情况下。

2.1.23、死锁及产生原因

死锁是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力干涉那他们都将无法推进下去,如果系统资源充足,进程的资源请求都能够得到满足,死锁出现的可能性就很低,否则就会因争夺有限的资源而陷入死锁。
在这里插入图片描述
产生原因:

系统资源不足、进程运行推进的顺序不合适、资源分配不当等。

示例代码:

import java.util.concurrent.TimeUnit;
class HoldLockThread implements Runnable {
    private String lockA;
    private String lockB;
    public HoldLockThread(String lockA, String lockB) {
        this.lockA = lockA;
        this.lockB = lockB;
    }
    @Override
    public void run() {
        synchronized (lockA) {
            System.out.println(Thread.currentThread().getName()+"\t自己持有:"+lockA+"\t尝试获得:"+lockB);
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            synchronized (lockB) {
                System.out.println(Thread.currentThread().getName()+"\t自己持有:"+lockB+"\t尝试获得:"+lockA);
            }
        }
    }
}
/**
 * 死锁是指两个或者两个以上的进程在执行过程中,
 * 因争夺资源而造成的互相等待的现象,
 * 若无外力干涉那他们都将无法推进下去
 */
public class DeadLockDemo {
    public static void main(String[] args) {
        String lockA = "lockA";
        String lockB = "lockB";
        new Thread(new HoldLockThread(lockA, lockB), "AAA").start();
        new Thread(new HoldLockThread(lockB, lockA), "BBB").start();
    }
}

2.1.24、如何避免死锁

①加锁顺序:

当多个线程需要相同的一些锁,但是按照不同的顺序加锁,死锁就很容易发生。

如果能确保所有的线程都是按照相同的顺序获得锁,那么死锁就不会发生。

②加锁时限:

另外一个可以避免死锁的方法是在尝试获取锁的时候加一个超时时间,这也就意味着在尝试获取锁的过程中若超过了这个时限该线程则放弃对该锁请求。若一个线程没有在给定的时限内成功获得所有需要的锁,则会进行回退并释放所有已经获得的锁,然后等待一段随机的时间再重试。这段随机的等待时间让其它线程有机会尝试获取相同的这些锁,并且让该应用在没有获得锁的时候可以继续运行。

③死锁检测:

死锁检测是一个更好的死锁预防机制,它主要是针对那些不可能实现按序加锁并且锁超时也不可行的场景。

每当一个线程获得了锁,会在线程和锁相关的数据结构中(map、graph等等)将其记下。除此之外,每当有线程请求锁,也需要记录在这个数据结构中。

当一个线程请求锁失败时,这个线程可以遍历锁的关系图看看是否有死锁发生。例如,线程A请求锁7,但是锁7这个时候被线程B持有,这时线程A就可以检查一下线程B是否已经请求了线程A当前所持有的锁。如果线程B确实有这样的请求,那么就是发生了死锁(线程A拥有锁1,请求锁7;线程B拥有锁7,请求锁1)。

当然,死锁一般要比两个线程互相持有对方的锁这种情况要复杂的多。线程A等待线程B,线程B等待线程C,线程C等待线程D,线程D又在等待线程A。线程A为了检测死锁,它需要递进地检测所有被B请求的锁。从线程B所请求的锁开始,线程A找到了线程C,然后又找到了线程D,发现线程D请求的锁被线程A自己持有着。这是它就知道发生了死锁。

2.1.25、死锁解决方案

①jps命令定位进程号
jps -l 查看进程号
②jstack找到死锁查看
jstack 刚刚找到的进程号进行查看

2.2、JUC

2.2.1、什么是AQS

AQS全称为AbstractQueuedSynchronizer,是并发容器JUC(java.util.concurrent)下locks包内的一个类。它实现了一个FIFO(FirstIn、FisrtOut先进先出)的队列。底层实现的数据结构是一个双向链表
在这里插入图片描述
AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。

AQS使用一个int成员变量来表示同步状态,通过内置的FIFO队列来完成获取资源线程的排队工作。AQS使用CAS对该同步状态进行原子操作实现对其值的修改。

状态信息通过protected类型的getState,setState,compareAndSetState进行操作。

2.2.2、AQS的大体实现

AQS内部维护了一个CLH队列来管理锁。线程会首先尝试获取锁,如果失败就将当前线程及等待状态等信息包装成一个node节点加入到同步队列sync queue里。 接着会不断的循环尝试获取锁,条件是当前节点为head的直接后继才会尝试。如果失败就会阻塞自己直到自己被唤醒。而当持有锁的线程释放锁的时候,会唤醒队列中的后继线程。

CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。

下图的三个线程运行流程可大致模拟AQS的运行流程:

在这里插入图片描述

2.2.3、解释一下CAS

CAS全称为Compare-And-Swap,它是一条CPU并发原语。

它的功能是判断内存某个位置的值是否为预期值,如果是则更改为新的值,这个过程是原子的。

CAS并发原语体现在JAVA语言中就是sun.misc.Unsafe类中的各个方法。调用Unsafe类中的CAS方法,JVM会帮我们实现出CAS汇编指令。这是一种完全依赖于硬件的功能,通过它实现了原子操作。再次强调,由于CAS是一种系统原语,原语属于操作系统用语范畴,是由若干条指令组成的,用于完成某个功能的一个过程,并且原语的执行必须是连续的,在执行过程中不允许被中断,也就是说CAS是一条CPU的原子指令,不会造成所谓的数据不一致的问题。

CAS缺点:

①循环时间长开销很大。

我们可以看到getAndAddInt方法执行时,有个do while
在这里插入图片描述
如果CAS失败,会一直进行尝试,如果CAS长时间一直不成功,可能会给CPU带来很大的开销。

②只能保证一个共享变量的原子操作。

当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作。

但是,对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁来保证原子性。

③引出来ABA问题

关于ABA问题,在AtomicInteger的ABA问题中会给出具体的描述和解决方案。

2.2.4、解释一下unsafe类是什么

是CAS的核心类,由于Java方法无法直接访问底层系统,需要通过本地(native)方法来访问,Unsafe相当于一个后门,基于该类可以直接操作特定内存的数据。Unsafe类存在于sun.misc包中,其内部方法操作可以像C的指针一样直接操作内存,因为Java中CAS操作的执行依赖于Unsafe类的方法。

注意Unsafe类中的所有方法都是native修饰的,也就是说Unsafe类中的方法都直接调用操作系统底层资源执行相应任务。
在这里插入图片描述

2.2.5、双端检测机制知道吗

双端检索机制就是在加锁前和加锁后都进行一次判断。

说明:之所以不在方法上加 synchronized 是因为synchronized锁太重了,加上之后将整个方法都锁住了

public class VolatileDclDemo {
    //private static VolatileDclDemo instance;
    private static volatile VolatileDclDemo instance;
    public VolatileDclDemo() {
        System.out.println(Thread.currentThread().getName() + "\t VolatileDclDemo构造方法VolatileDclDemo()");
    }
    //DCL(Dooble Check Lock 双端检索机制)
    public VolatileDclDemo getInstance(){
        if (instance == null){
            synchronized (VolatileDclDemo.class){
                if (instance == null){
                    instance = new VolatileDclDemo();
                }
            }
        }
        return instance;
    }
}

单例模式volatile分析

DCL(双端检索机制)不一定线程安全,原因是有指令重排的存在,加入volatile可以禁止指令重排。

原因在于某一个线程执行到第一次检测,读取到instance不为null时,instance的引用对象可能没有完成初始化。

Instance = new SingletonDemo();可以分为3步完成(伪代码)。

memory = allocate();//1、分配对象空间内存
instance(memory); //2、初始化对象
instance = memory;//3、设置instance指向刚分配的内存地址,此时instance != null

步骤2和步骤3不存在数据依赖关系,而且无论重排前还是重排后程序的执行结果在单线程中并没有改变。因此这种重排优化是允许的。

memory = allocate();//1、分配对象空间内存
instance = memory;//3、设置instance指向刚分配的内存地址,此时instance != null,但是对象还没有初始化完成!
instance(memory); //2、初始化对象

但是指令重排只会保证串行语义的执行的一致性(单线程),但并不会关心多线程间的语义一致性。

所以当一条线程访问instance不为null时,由于instance实例未必已初始化完成,也就造成了线程安全问题。

解释:多线程的情况下为什么会发生这种情况呢?new对象在汇编指令中不是一条原子性操作,一个获取锁的线程还在初始化这个对象的时候,另一个线程已经进入判断,发现有值,就拿着未初始化完成的对象开始使用了,而此时未初始化完成的对象为null。

public class SingletonDemo {
    // 需要禁止指令重排,保证初始化该对象时不会因指令重排出现未初始化完该对象而导致拿到的对象为null
    private static volatile SingletonDemo instance = null;
    private SingletonDemo() {
        System.out.println(Thread.currentThread().getName() + "\t我是构造方法SingletonDemo()");
    }
    /**
     * DCL (Double check lock) 双端检索机制
     * @return
     */
    public static SingletonDemo getInstance() {
        if (instance == null) {

            synchronized (SingletonDemo.class) {
                if (instance == null) {
                    // 这里需要禁止指令重排
                    instance = new SingletonDemo();
                }
            }
        }
        return instance;
    }
    public static void main(String[] args) {
        for (int i = 1; i <= 1000; i++) {
            new Thread() {
                @Override
                public void run() {
                    SingletonDemo.getInstance();
                }
            }.start();
        }
    }
}

2.2.6、atomic 的原理

Atomic包是Java.util.concurrent下的另一个专门为线程安全设计的Java包,包含多个原子操作类。这个包里面提供了一组原子变量类。其基本的特性就是在多线程环境下,当有多个线程同时执行这些类的实例包含的方法时,具有排他性,即当某个线程进入方法,执行其中的指令时,不会被其他线程打断,而别的线程就像自旋锁一样,一直等到该方法执行完成,才由JVM从等待队列中选择一个另一个线程进入,这只是一种逻辑上的理解。实际上是借助硬件的相关指令来实现的,不会阻塞线程(或者说只是在硬件级别上阻塞了)。可以对基本数据、数组中的基本数据、对类中的基本数据进行操作。原子变量类相当于一种泛化的volatile变量,能够支持原子的和有条件的读-改-写操作。

class MyThread implements Runnable {
 
    static AtomicInteger ai=new AtomicInteger(0);
 
    public void run() {
        for (int m = 0; m < 1000000; m++) {
            ai.getAndIncrement();
        }
    }
};
 
public class TestAtomicInteger {
    public static void main(String[] args) throws InterruptedException {
        MyThread mt = new MyThread();
 
        Thread t1 = new Thread(mt);
        Thread t2 = new Thread(mt);
        t1.start();
        t2.start();
        Thread.sleep(500);
        System.out.println(MyThread.ai.get());
    }
}

在以上代码中,使用AtomicInteger声明了一个全局变量,并且在多线程中进行自增,代码中并没有进行显示的加锁。以上代码的输出结果,永远都是2000000。如果将AtomicInteger换成Integer,打印结果基本都是小于2000000。

原理:

AtomicInteger使用非阻塞算法来实现并发控制的。

代码如下:

public class AtomicInteger extends Number implements java.io.Serializable {
    private static final long serialVersionUID = 6214790243416807050L;
 
    // setup to use Unsafe.compareAndSwapInt for updates
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;
 
    static {
        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }
 
    private volatile int value;
 
    /**
     * Creates a new AtomicInteger with the given initial value.
     *
     * @param initialValue the initial value
     */
    public AtomicInteger(int initialValue) {
        value = initialValue;
    }
 
    /**
     * Creates a new AtomicInteger with initial value {@code 0}.
     */
    public AtomicInteger() {
    }
 
    ......
}

这里, unsafe是java提供的获得对对象内存地址访问的类,注释已经清楚的写出了,它的作用就是在更新操作时提供“比较并替换”的作用。实际上就是AtomicInteger中的一个工具。

valueOffset是用来记录value本身在内存的编译地址的,这个记录,也主要是为了在更新操作在内存中找到value的位置,方便比较。

value是用来存储整数的时间变量,这里被声明为volatile。volatile只能保证这个变量的可见性。不能保证他的原子性。

可以看看getAndIncrement这个类似i++的函数,可以发现,是调用了UnSafe中的getAndAddInt。

/**
     * Atomically increments by one the current value.
     *
     * @return the previous value
     */
    public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }
 
    /**
     * Atomically sets to the given value and returns the old value.
     *
     * @param newValue the new value
     * @return the previous value
     */
    public final int getAndSet(int newValue) {
        return unsafe.getAndSetInt(this, valueOffset, newValue);
    }
 
    public final int getAndSetInt(Object var1, long var2, int var4) {
        int var5;
        do {
            var5 = this.getIntVolatile(var1, var2);
            //使用unsafe的native方法,实现高效的硬件级别CAS
        } while(!this.compareAndSwapInt(var1, var2, var5, var4));
 
        return var5;
    }

如何保证原子性:自旋 + CAS(乐观锁)。在这个过程中,通过compareAndSwapInt比较更新value值,如果更新失败,重新获取旧值,然后更新。

2.2.7、了解过AtomicInteger的ABA问题吗?

CAS算法实现一个重要前提需要取出内存中某时刻的数据并在当下时刻比较并替换,那么在这个时间差内会导致数据的变化。
比如说一个线程one从内存位置V中取出A,这时候另一个线程two也从内存中取出A,并且线程two进行了一些操作将值变成了B,然后线程two又将V位置的数据变成了A,这时候线程one进行CAS操作发现内存中仍然是A,然后线程one操作成功。
尽管线程one的CAS操作成功,但是不代表这个过程就是没有问题的。

解决ABA问题:

原子引用+新增一种机制,那就是修改版本号(类似时间戳)。

import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.atomic.AtomicStampedReference;
public class ABADemo {
    static AtomicReference<Integer> atomicReference = new AtomicReference<>(100);
    static AtomicStampedReference<Integer> atomicStampedReference = new AtomicStampedReference<>(100, 1);
    public static void main(String[] args) {
        System.out.println("=========以下是ABA问题的产生==============");
        new Thread(){
            @Override
            public void run() {
                atomicReference.compareAndSet(100, 101);
                atomicReference.compareAndSet(101, 100);
            }
        }.start();
        new Thread(){
            @Override
            public void run() {
                try {
                    TimeUnit.SECONDS.sleep(1);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(atomicReference.compareAndSet(100, 2020) + "\t" + atomicReference.get());
            }
        }.start();
        try {
            TimeUnit.SECONDS.sleep(2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("=========以下是ABA问题的解决==============");
        // 原子引用+版本号
        new Thread(){
            @Override
            public void run() {
                int stamp = atomicStampedReference.getStamp();
                System.out.println(Thread.currentThread().getName() + "\t第一次版本号:" + stamp);
                try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); }
                atomicStampedReference.compareAndSet(100, 101, atomicStampedReference.getStamp(), atomicStampedReference.getStamp()+1);
                System.out.println(Thread.currentThread().getName() + "\t第二次版本号:" + atomicStampedReference.getStamp());
                atomicStampedReference.compareAndSet(101, 100, atomicStampedReference.getStamp(), atomicStampedReference.getStamp()+1);
                System.out.println(Thread.currentThread().getName() + "\t第三次版本号:" + atomicStampedReference.getStamp());

            }
        }.start();
        new Thread(){
            @Override
            public void run() {
                int stamp = atomicStampedReference.getStamp();
                System.out.println(Thread.currentThread().getName() + "\t第一次版本号:" + stamp);
                try {
                    // 等待上一个线程完成一次ABA操作
                    TimeUnit.SECONDS.sleep(3);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                boolean result = atomicStampedReference.compareAndSet(100, 2020, stamp, stamp+1);
                System.out.println(Thread.currentThread() +
                        "\t是否修改成功:" + result +
                        "\t当前最新实际版本号:"+ atomicStampedReference.getStamp() +
                        "\t当前实际最新值:" + atomicStampedReference.getReference());
            }
        }.start();
    }
}

2.2.8、CountDownLatch/CyclicBarrier/Semaphore使用过吗

①CountDownLatch

让一些线程阻塞直到另一些线程完成一系列操作后才被唤醒。

CountDownLatch主要有两个方法,当一个或多个线程调用await方法时,调用线程会被阻塞。其他线程调用countDown方法会将计数器减1(调用countDown方法的线程不会阻塞),当计数器的值变为零时,因调用await方法被阻塞的线程会被唤醒,继续执行。

import java.util.concurrent.CountDownLatch;
public class CountDownLatchDemo {
    public static void main(String[] args) {
        CountDownLatch countDownLatch = new CountDownLatch(6);
        for (int i = 1; i <= 6; i++) {
            new Thread(()->{
                System.out.println(Thread.currentThread().getName()+"\t上完自习,离开教室");
                countDownLatch.countDown();
            }, String.valueOf(i)).start();
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName()+"\t--------关门走人");
    }
}

②CyclicBarrier

CyclicBarrier的字面意思是可循环(Cyclic)使用的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续执行,线程进入屏障通过CyclicBarrier的await()方法。

集齐七颗龙珠就能召唤神龙。

import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo {
    public static void main(String[] args) {
        CyclicBarrier cyclicBarrier = new CyclicBarrier(7, () -> {
            System.out.println("------召唤神龙!--------");
        });
        for (int i = 1; i <= 7; i++) {
            final int tempInt = i;
            new Thread(()->{
                System.out.println(Thread.currentThread().getName()+"\t收集到第:"+tempInt+"龙珠");
                try {
                    cyclicBarrier.await();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }, String.valueOf(i)).start();
        }
    }
}

③Semaphore

信号量主要用于两个目的,一个是用于多个共享资源的互斥使用,另一个用于并发线程数的控制。

import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
public class SemaphoreDemo {
    public static void main(String[] args) {
        Semaphore semaphore = new Semaphore(3); // 模拟3个停车位
        for (int i = 1; i <= 6; i++) {  // 模拟6部汽车
            new Thread(()->{
                try {
                    // 抢占
                    semaphore.acquire();
                    System.out.println(Thread.currentThread().getName()+"\t抢到车位!");
                    TimeUnit.SECONDS.sleep(3);
                    System.out.println(Thread.currentThread().getName()+"\t释放车位!");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 释放
                    semaphore.release();
                }
            },String.valueOf(i)).start();
        }
    }
}

2.2.9、什么是LockSupport

LockSupport是用来创建锁和其他同步类的基本线程阻塞原语。下面这句话,后面详细说LockSupport中的park()和unpark()的作用分别是阻塞线程和解除阻塞线程。

AQS的底层排队就是用LockSupport.pork()来进行排队的。

2.2.10、阻塞队列

阻塞队列,顾名思义,首先它是一个队列,而一个阻塞队列在数据结构中所起的作用大致如下图所示:
在这里插入图片描述
线程1往阻塞队列中添加元素,而线程2从阻塞队列中移除元素

当阻塞队列是空时,从队列中获取元素的操作将会被阻塞。

当阻塞队列是满时,往队列中添加元素的操作将会被阻塞。

试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其他的线程往空的队列插入新的元素。

同样,试图往已满的阻塞队列中添加新元素的线程同样也会被阻塞,直到其他的线程从队列中移除一个或者多个元素或者完全清空队列后使队列重新变得空闲起来并后续新增。

2.2.12、阻塞队列有什么好处?

在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤醒。

为什么需要BlockingQueue

好处是我们不需要关心什么时候需要阻塞线程,什么时候需要唤醒线程,因为这一切BlockingQueue都给你一手包办了。

2.2.13、阻塞队列如何使用

①生产者消费者模式

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
/**
 * volatile/CAS/atomicInteger/BlockQueue/线程交互/原子引用
 */
class MyResource {
    private volatile boolean FLAG = true;// 默认开启,进行生产+消费
    private AtomicInteger atomicInteger = new AtomicInteger();
    BlockingQueue<String> blockingQueue = null;
    public MyResource(BlockingQueue<String> blockingQueue) {
        this.blockingQueue = blockingQueue;
        System.out.println(blockingQueue.getClass().getName());
    }
    public void myProd() throws Exception {
        String data = null;
        boolean retValue;
        while (FLAG) {
            data = atomicInteger.incrementAndGet()+"";
            retValue = blockingQueue.offer(data, 2L, TimeUnit.SECONDS);
            if (retValue) {
                System.out.println(Thread.currentThread().getName()+"\t插入队列"+data+"成功!");
            } else {
                System.out.println(Thread.currentThread().getName()+"\t插入队列"+data+"失败!");
            }
            TimeUnit.SECONDS.sleep(1);
        }
        System.out.println(Thread.currentThread().getName()+"\tflag=false,生产停止");
    }
    public void myConsumer() throws Exception {
        String result = null;
        while (FLAG) {
            result = blockingQueue.poll(2L, TimeUnit.SECONDS);
            if (null== result || "".equalsIgnoreCase(result)) {
                FLAG = false;
                System.out.println(Thread.currentThread().getName()+"\t超过2s没有获取到队列值,消费退出");
                return;
            }
            System.out.println(Thread.currentThread().getName()+"\t消费队列"+result+"成功!");
        }
    }
    public void stop() throws Exception {
        this.FLAG = false;
    }
}
public class ProdConsumer_BlockQueueDemo {
    public static void main(String[] args) {
        MyResource myResource = new MyResource(new ArrayBlockingQueue<>(3));

        new Thread(()->{
            System.out.println(Thread.currentThread().getName()+"\t生产线程启动");
            try {
                myResource.myProd();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, "Prod").start();
        new Thread(()->{
            System.out.println(Thread.currentThread().getName()+"\t消费线程启动");
            try {
                myResource.myConsumer();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, "Consumer").start();
        try {
            TimeUnit.SECONDS.sleep(5);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("5秒钟时间到,线程停止");
        try {
            myResource.stop();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

②线程池

Callable以及FutureTask的使用

import java.util.concurrent.Callable;
import java.util.concurrent.FutureTask;
class MyThread implements Callable<Integer> {
    public Integer call() throws Exception {
        System.out.println("********come in callable********");
        return 1024;
    }
}
/**
 * 第三种线程获取方式
 */
public class CallableDemo {
    public static void main(String[] args) throws Exception {
        FutureTask<Integer> futureTask = new FutureTask<Integer>(new MyThread());
        Thread t1 = new Thread(futureTask, "AA");
        t1.start();
        int result01 = 100;
        /*while (!futureTask.isDone()) {
            // 如果线程没有计算结束,可以等待
        }*/
        int result02 = futureTask.get();   // 要求获得Callable线程的计算结果,如果没有计算完成就要去强求,会导致堵塞,直到计算完成
        int sum = result01 + result02;
        System.out.println("*******result:" + sum);
    }
}

2.3、JVM

2.3.1、JVM的体系结构

在这里插入图片描述
类装载器子系统:

负责加载class文件,class文件在文件开头有特定的文件标示,将class文件字节码内容加载到内存中,并将这些内容转换成方法区中的运行时数据结构并且ClassLoader只负责class文件的加载,至于它是否可以运行,则由Execution Engine决定。

Native Interface本地接口:

本地接口的作用是融合不同的编程语言为 Java 所用,它的初衷是融合 C/C++程序,Java 诞生的时候是 C/C++横行的时候,要想立足,必须有调用 C/C++程序,于是就在内存中专门开辟了一块区域处理标记为native的代码,它的具体做法是 Native Method Stack中登记 native方法,在Execution Engine 执行时加载native libraies。
目前该方法使用的越来越少了,除非是与硬件有关的应用,比如通过Java程序驱动打印机或者Java系统管理生产设备,在企业级应用中已经比较少见。

PC寄存器:

每个线程都有一个程序计数器,是线程私有的,就是一个指针,指向方法区中的方法字节码(用来存储指向下一条指令的地址,也即将要执行的指令代码),由执行引擎读取下一条指令,是一个非常小的内存空间,几乎可以忽略不记。
这块内存区域很小,它是当前线程所执行的字节码的行号指示器,字节码解释器通过改变这个计数器的值来选取下一条需要执行的字节码指令。
如果执行的是一个Native方法,那这个计数器是空的。
用以完成分支、循环、跳转、异常处理、线程恢复等基础功能。不会发生内存溢出(OutOfMemory=OOM)错误。

Method Area 方法区:

供各线程共享的运行时内存区域。它存储了每一个类的结构信息,例如运行时常量池(Runtime Constant Pool)、字段和方法数据、构造函数和普通方法的字节码内容。在不同虚拟机里头实现是不一样的,最典型的就是永久代(PermGen space)和元空间(Metaspace)。

本地方法栈:

本地方法栈中登记native方法,在Execution Engine 执行时加载本地方法库。比如之前提到的unsafe类,大部分都是native方法。

Stack栈:

栈也叫栈内存,主管Java程序的运行,是在线程创建时创建,它的生命期是跟随线程的生命期,线程结束栈内存也就释放,对于栈来说不存在垃圾回收问题,只要线程一结束该栈就Over,生命周期和线程一致,是线程私有的。8种基本类型的变量+对象的引用变量+实例方法都是在函数的栈内存中分配。

栈帧中主要保存3 类数据:

①本地变量(Local Variables):输入参数和输出参数以及方法内的变量。

②栈操作(Operand Stack):记录出栈、入栈的操作。

③栈帧数据(Frame Data):包括类文件、方法等等。

2.3.2、Java的类加载器

JVM启动的时候,Java开始使用如下三种类型的类加载器:

①启动(Bootstrap)类加载器:启动类加载器是用本地代码实现的类加载器,它负责将JAVA_HOME/lib下面的核心类库或-Xbootclasspath选项指定的jar包等虚拟机识别的类库加载到内存中。由于启动类加载器涉及到虚拟机本地实现细节,开发者无法直接获取到启动类加载器的引用。具体可由启动类加载器加载到的路径可通过System.getProperty(“sun.boot.class.path”)查看。

②扩展(Extension)类加载器:扩展类加载器是由Sun的ExtClassLoader(sun.misc.Launcher$ExtClassLoader)实现的,它负责将JAVA_HOME /lib/ext或者由系统变量-Djava.ext.dir指定位置中的类库加载到内存中。开发者可以直接使用标准扩展类加载器,具体可由扩展类加载器加载到的路径可通过System.getProperty(“java.ext.dirs”)查看。

③系统(System)类加载器:系统类加载器是由 Sun 的 AppClassLoader(sun.misc.Launcher$AppClassLoader)实现的,它负责将用户类路径(java -classpath或-Djava.class.path变量所指的目录,即当前类所在路径及其引用的第三方类库的路径,如第四节中的问题6所述)下的类库加载到内存中。开发者可以直接使用系统类加载器,具体可由系统类加载器加载到的路径可通过System.getProperty(“java.class.path”)查看。
在这里插入图片描述

2.3.2、解释一下双亲委派机制

当一个类收到了类加载请求,他首先不会尝试自己去加载这个类,而是把这个请求委派给父类去完成,每一个层次类加载器都是如此,因此所有的加载请求都应该传送到启动类加载其中,只有当父类加载器反馈自己无法完成这个请求的时候(在它的加载路径下没有找到所需加载的Class),子类加载器才会尝试自己去加载。
采用双亲委派的一个好处是比如加载位于 rt.jar 包中的类 java.lang.Object,不管是哪个加载器加载这个类,最终都是委托给顶层的启动类加载器进行加载,这样就保证了使用不同的类加载器最终得到的都是同样一个 Object对象。

2.3.3、JVM加载class文件的原理机制

Java中的所有类,都需要由类加载器装载到JVM中才能运行。类加载器本身也是一个类,而它的工作就是把class文件从硬盘读取到内存中。在写程序的时候,我们几乎不需要关心类的加载,因为这些都是隐式装载的,除非我们有特殊的用法,像是反射,就需要显式的加载所需要的类。

类装载方式,有两种:

1.隐式装载, 程序在运行过程中当碰到通过new 等方式生成对象时,隐式调用类装载器加载对应的类到jvm中,
2.显式装载, 通过class.forname()等方法,显式加载需要的类

JVM中类的加载是由类加载器(ClassLoader)和它的子类来实现的,Java中的类加载器是一个重要的Java运行时系统组件,它负责在运行时查找和装入类文件中的类。

由于Java的跨平台性,经过编译的Java源程序并不是一个可执行程序,而是一个或多个类文件。当Java程序需要使用某个类时,JVM会确保这个类已经被加载、连接(验证、准备和解析)和初始化

类的加载是指把类的.class文件中的数据读入到内存中,通常是创建一个字节数组读入.class文件,然后产生与所加载类对应的Class对象。加载完成后,Class对象还不完整,所以此时的类还不可用。

当类被加载后就进入连接阶段,这一阶段包括

**验证:**为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。

**准备:**为静态变量分配内存并设置默认的初始值。

**解析:**将符号引用替换为直接引用。

最后JVM对类进行初始化,包括:1)如果类存在直接的父类并且这个类还没有被初始化,那么就先初始化父类;2)如果类中存在初始化语句,就依次执行这些初始化语句。

2.3.4、Java堆体系介绍

在这里插入图片描述
Heap 堆一个JVM 实例只存在一个堆内存,堆内存的大小是可以调节的。类加载器读取了类字节码文件后,需要把类、方法、常量、变最放到堆内存中,保存所有引用类型的真实信息,以便执行器执行。

堆内存分为三部分:

Young Generation space 新生区 Young/New

Tenure generation space 养老区 Old/Tenure

Permanent space 永久代 Perm(JDK1.8 修改为MetaSpace元空间,该区域从JVM的堆内存中移动到系统的本地内存;既JDK1.8的堆体系结构=新生代+老年代+MetaSpace),永久代在逻辑上在堆内存空间,但在物理上永久代与堆是独立的。方法区是规范,JVM的永久代是实现,元空间也是方法区的一个实现

2.3.5、什么是GC?为什么要有GC?

GC是垃圾收集的意思,内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java语言没有提供释放已分配内存的显示操作方法。Java程序员不用担心内存管理,因为垃圾收集器会自动进行管理。要请求垃圾收集,可以调用下面的方法之一:System.gc() 或Runtime.getRuntime().gc() ,但JVM可以屏蔽掉显示的垃圾回收调用。
垃圾回收可以有效的防止内存泄露,有效的使用可以使用的内存。垃圾回收器通常是作为一个单独的低优先级的线程运行,不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清除和回收,程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收。在Java诞生初期,垃圾回收是Java最大的亮点之一,因为服务器端的编程需要有效的防止内存泄露问题,然而时过境迁,如今Java的垃圾回收机制已经成为被诟病的东西。移动智能终端用户通常觉得iOS的系统比Android系统有更好的用户体验,其中一个深层次的原因就在于Android系统中垃圾回收的不可预知性。

2.3.6、如何定义一个对象是否可被回收

1、 引用计数算法:判断对象的引用数量

引用计数算法是通过判断对象的引用数量来决定对象是否可以被回收。

引用计数算法是垃圾收集器中的早期策略。在这种方法中,堆中的每个对象实例都有一个引用计数。当一个对象被创建时,且将该对象实例分配给一个引用变量,该对象实例的引用计数设置为 1。当任何其它变量被赋值为这个对象的引用时,对象实例的引用计数加 1(a = b,则b引用的对象实例的计数器加 1),但当一个对象实例的某个引用超过了生命周期或者被设置为一个新值时,对象实例的引用计数减 1。特别地,当一个对象实例被垃圾收集时,它引用的任何对象实例的引用计数器均减 1。任何引用计数为0的对象实例可以被当作垃圾收集。

引用计数收集器可以很快的执行,并且交织在程序运行中,对程序需要不被长时间打断的实时环境比较有利,但其很难解决对象之间相互循环引用的问题。

2、 可达性分析算法:判断对象的引用链是否可达

可达性分析算法是通过判断对象的引用链是否可达来决定对象是否可以被回收。

可达性分析算法是从离散数学中的图论引入的,程序把所有的引用关系看作一张图,通过一系列的名为 “GC Roots” 的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain)。当一个对象到 GC Roots 没有任何引用链相连(用图论的话来说就是从 GC Roots 到这个对象不可达)时,则证明此对象是不可用的,如下图所示。在Java中,可作为 GC Root 的对象包括以下几种:

虚拟机栈(栈帧中的局部变量表)中引用的对象;

方法区中类静态属性引用的对象;

方法区中常量引用的对象;

本地方法栈中Native方法引用的对象;

2.3.7、常用的垃圾收集算法

1、标记清除算法

标记-清除算法分为标记和清除两个阶段。该算法首先从根集合进行扫描,对存活的对象对象标记,标记完毕后,再扫描整个空间中未被标记的对象并进行回收

标记-清除算法的主要不足有两个:

效率问题:标记和清除两个过程的效率都不高;

空间问题:标记-清除算法不需要进行对象的移动,并且仅对不存活的对象进行处理,因此标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

2、复制算法

复制算法将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这种算法适用于对象存活率低的场景,比如新生代。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。

事实上,现在商用的虚拟机都采用这种算法来回收新生代。因为研究发现,新生代中的对象每次回收都基本上只有10%左右的对象存活,所以需要复制的对象很少,效率还不错。

3、标记整理算法

复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。标记整理算法的标记过程类似标记清除算法,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存,类似于磁盘整理的过程,该垃圾回收算法适用于对象存活率高的场景(老年代)。

标记整理算法与标记清除算法最显著的区别是:标记清除算法不进行对象的移动,并且仅对不存活的对象进行处理;而标记整理算法会将所有的存活对象移动到一端,并对不存活对象进行处理,因此其不会产生内存碎片。

4、分代收集算法

对于一个大型的系统,当创建的对象和方法变量比较多时,堆内存中的对象也会比较多,如果逐一分析对象是否该回收,那么势必造成效率低下。分代收集算法是基于这样一个事实:不同的对象的生命周期(存活情况)是不一样的,而不同生命周期的对象位于堆中不同的区域,因此对堆内存不同区域采用不同的策略进行回收可以提高 JVM 的执行效率。当代商用虚拟机使用的都是分代收集算法:新生代对象存活率低,就采用复制算法;老年代存活率高,就用标记清除算法或者标记整理算法。

2.3.8、内存分配和回收策略

JVM的内存回收分为Minor GC 和 Full GC。

Minor GC:回收新生代上,因为新生代对象存活时间很短,因此 Minor GC 会频繁执行,执行的速度一般也会比较快。
Full GC:回收老年代和新生代,老年代对象其存活时间长,因此 Full GC 很少执行,执行速度会比 Minor GC 慢很多。

Minor GC过程(复制->清空->互换):

在这里插入图片描述
①eden、SurvivorFrom 复制到 SurvivorTo,年龄+1
首先,当Eden区满的时候会触发第一次GC,把还活着的对象拷贝到SurvivorFrom区,当Eden区再次触发GC的时候会扫描Eden区和From区域,对这两个区域进行垃圾回收,经过这次回收后还存活的对象,则直接复制到To区域(如果有对象的年龄已经达到了老年的标准,则赋值到老年代区),同时把这些对象的年龄+1
②清空 eden、SurvivorFrom
然后,清空Eden和SurvivorFrom中的对象,也即复制之后有交换,谁空谁是to
③SurvivorTo和 SurvivorFrom 互换
最后,SurvivorTo和SurvivorFrom互换,原SurvivorTo成为下一次GC时的SurvivorFrom区。部分对象会在From和To区域中复制来复制去,如此交换15次(由JVM参数MaxTenuringThreshold决定,这个参数默认是15),最终如果还是存活,就存入到老年代

Full GC过程(标记整理算法):

具体见上方的标记整理算法。

内存分配策略:

①对象优先在 Eden 分配

大多数情况下,对象在新生代 Eden 区分配,当 Eden 区空间不够时,发起 Minor GC。

②大对象直接进入老年代

大对象是指需要连续内存空间的对象,最典型的大对象是那种很长的字符串以及数组。

经常出现大对象会提前触发垃圾收集以获取足够的连续空间分配给大对象。

-XX:PretenureSizeThreshold,大于此值的对象直接在老年代分配,避免在 Eden 区和 Survivor 区之间的大量内存复制。

③长期存活的对象进入老年代

为对象定义年龄计数器,对象在 Eden 出生并经过 Minor GC 依然存活,将移动到 Survivor 中,年龄就增加 1 岁,增加到一定年龄则移动到老年代中。

-XX:MaxTenuringThreshold 用来定义年龄的阈值。

④动态对象年龄判定

虚拟机并不是永远地要求对象的年龄必须达到 MaxTenuringThreshold 才能晋升老年代,如果在 Survivor 中相同年龄所有对象大小的总和大于 Survivor 空间的一半,则年龄大于或等于该年龄的对象可以直接进入老年代,无需等到 MaxTenuringThreshold 中要求的年龄。

⑤空间分配担保

在发生 Minor GC 之前,虚拟机先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果条件成立的话,那么 Minor GC 可以确认是安全的。

如果不成立的话虚拟机会查看 HandlePromotionFailure 设置值是否允许担保失败,如果允许那么就会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次 Minor GC;如果小于,或者 HandlePromotionFailure 设置不允许冒险,那么就要进行一次 Full GC。

Full GC 触发条件

对于 Minor GC,其触发条件非常简单,当 Eden 空间满时,就将触发一次 Minor GC。而 Full GC 则相对复杂,有以下条件:

①调用 System.gc()

只是建议虚拟机执行 Full GC,但是虚拟机不一定真正去执行。不建议使用这种方式,而是让虚拟机管理内存。

②老年代空间不足

老年代空间不足的常见场景为前文所讲的大对象直接进入老年代、长期存活的对象进入老年代等。

为了避免以上原因引起的 Full GC,应当尽量不要创建过大的对象以及数组。除此之外,可以通过 -Xmn 虚拟机参数调大新生代的大小,让对象尽量在新生代被回收掉,不进入老年代。还可以通过 -XX:MaxTenuringThreshold 调大对象进入老年代的年龄,让对象在新生代多存活一段时间。

③空间分配担保失败

使用复制算法的 Minor GC 需要老年代的内存空间作担保,如果担保失败会执行一次 Full GC。

④JDK 1.7 及以前的永久代空间不足

在 JDK 1.7 及以前,HotSpot 虚拟机中的方法区是用永久代实现的,永久代中存放的为一些 Class 的信息、常量、静态变量等数据。

当系统中要加载的类、反射的类和调用的方法较多时,永久代可能会被占满,在未配置为采用 CMS GC 的情况下也会执行 Full GC。如果经过 Full GC 仍然回收不了,那么虚拟机会抛出 java.lang.OutOfMemoryError。

为避免以上原因引起的 Full GC,可采用的方法为增大永久代空间或转为使用 CMS GC。

⑤Concurrent Mode Failure

执行 CMS GC 的过程中同时有对象要放入老年代,而此时老年代空间不足(可能是 GC 过程中浮动垃圾过多导致暂时性的空间不足),便会报 Concurrent Mode Failure 错误,并触发 Full GC。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值