分布式进程BaseManager(multiprocessing.managers)

本文介绍了一种使用Python多进程模块实现的任务分配方案,通过创建任务队列和结果队列来实现主进程与工作进程之间的任务传递。文章展示了如何设置主进程启动任务队列和结果队列,并详细解释了工作进程连接到主进程并获取任务的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

命令行运行:

#task_master.py

import random,time,queue
from multiprocessing.managers import BaseManager

task_queue = queue.Queue()
result_queue = queue.Queue()

class QueueManager(BaseManager):
    pass

def task_q():
    return task_queue
def result_q():
    return result_queue


print('master start.')
QueueManager.register('get_task_queue',callable=task_q)
QueueManager.register('get_result_queue',callable=result_q)
manager = QueueManager(address=('127.0.0.1',5000),authkey=b'abc')
manager.start()
task = manager.get_task_queue()
result = manager.get_result_queue()
for i in range(10):
    n = random.randint(0,10000)
    print('put task %d...' % n)
    task.put(n)
print('try get results...')
for i in range(10):
    r = result.get(timeout=100)
    print('Result: %s' % r)
manager.shutdown()
print('master exit.')


得到:

master start.
master start.
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 106, in spawn_main
    exitcode = _main(fd)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 115, in _main
    prepare(preparation_data)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 226, in prepare
    _fixup_main_from_path(data['init_main_from_path'])
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 278, in _fixup_main_from_path
    run_name="__mp_main__")
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\runpy.py", line 254, in run_path
    pkg_name=pkg_name, script_name=fname)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\runpy.py", line 96, in _run_module_code
    mod_name, mod_spec, pkg_name, script_name)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "D:\4视频教程\PythonExercise Files\task_master.py", line 22, in <module>
    manager.start()
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\managers.py", line 479, in start
    self._process.start()
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\process.py", line 105, in start
    self._popen = self._Popen(self)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\context.py", line 313, in _Popen
    return Popen(process_obj)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\popen_spawn_win32.py", line 34, in __init__
    prep_data = spawn.get_preparation_data(process_obj._name)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 144, in get_preparation_data
    _check_not_importing_main()
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35-32\lib\multiprocessing\spawn.py", line 137, in _check_not_importing_main
    is not going to be frozen to produce an executable.''')
RuntimeError: 
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.
在命令行运行:

#task_master.py

import random,time,queue
from multiprocessing.managers import BaseManager

task_queue = queue.Queue()
result_queue = queue.Queue()

class QueueManager(BaseManager):
    pass

##def task_q():
##    return task_queue
##def result_q():
##    return result_queue

if __name__ == '__main__':
    print('master start.')
    QueueManager.register('get_task_queue',callable= lambda: task_queue)
    QueueManager.register('get_result_queue',callable= lambda: result_queue)
    manager = QueueManager(address=('127.0.0.1',5000),authkey=b'abc')
    manager.start()
    task = manager.get_task_queue()
    result = manager.get_result_queue()
    for i in range(10):
        n = random.randint(0,10000)
        print('put task %d...' % n)
        task.put(n)
    print('try get results...')
    for i in range(10):
        r = result.get(timeout=100)
        print('Result: %s' % r)
    manager.shutdown()
    print('master exit.')

得到:

master start.
Traceback (most recent call last):
  File "task_master.py", line 22, in <module>
    manager.start()
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35

-32\lib\multiprocessing\managers.py", line 479, in start
    self._process.start()
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35

-32\lib\multiprocessing\process.py", line 105, in start
    self._popen = self._Popen(self)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35

-32\lib\multiprocessing\context.py", line 313, in _Popen
    return Popen(process_obj)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35

-32\lib\multiprocessing\popen_spawn_win32.py", line 66, in 

__init__
    reduction.dump(process_obj, to_child)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35

-32\lib\multiprocessing\reduction.py", line 59, in dump
    ForkingPickler(file, protocol).dump(obj)
_pickle.PicklingError: Can't pickle <function <lambda> at 

0x005656F0>: attribute lookup <lambda> on __main__ failed
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35

-32\lib\multiprocessing\spawn.py", line 100, in spawn_main
    new_handle = steal_handle(parent_pid, pipe_handle)
  File "C:\Users\lenovo\AppData\Local\Programs\Python\Python35

-32\lib\multiprocessing\reduction.py", line 81, in steal_handle
    _winapi.PROCESS_DUP_HANDLE, False, source_pid)
OSError: [WinError 87] 参数错误。

但是,以下代码可以正常运行:

#task_master.py

import random,time,queue
from multiprocessing.managers import BaseManager

task_queue = queue.Queue()
result_queue = queue.Queue()

class QueueManager(BaseManager):
    pass

def task_q():
    return task_queue
def result_q():
    return result_queue

if __name__ == '__main__':
    print('master start.')
    QueueManager.register('get_task_queue',callable= task_q)
    QueueManager.register('get_result_queue',callable= result_q)
    manager = QueueManager(address=('127.0.0.1',5000),authkey=b'abc')
    manager.start()
    task = manager.get_task_queue()
    result = manager.get_result_queue()
    for i in range(10):
        n = random.randint(0,10000)
        print('put task %d...' % n)
        task.put(n)
    print('try get results...')
    for i in range(10):
        r = result.get(timeout=100)
        print('Result: %s' % r)
    manager.shutdown()
    print('master exit.')



#task_worker.py

import sys, time, queue
from multiprocessing.managers import BaseManager

class QueueManager(BaseManager):
    pass

QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')

server_addr = '127.0.0.1'
print('Connect to server %s...' % server_addr)

m = QueueManager(address=(server_addr, 5000), authkey=b'abc')
m.connect()

task = m.get_task_queue()
result = m.get_result_queue()

for i in range(10):
    try:
        n = task.get(timeout = 1)
        print('run task %d * %d' % (n, n))
        r = '%d * %d = %d' % (n, n, n*n)
        time.sleep(1)
        result.put(r)
    except Queue.Empty:
        print('task queque is empty')

print('worker exit')




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值