【BZOJ 2956】模积和 【中国国家队清华集训 2012-2013 第一天】

这是一个关于数论和算法的博客,探讨了如何解决求模积和的问题,即求解∑∑((n mod i)*(m mod j)),其中1<=i<=n,1<=j<=m且i≠j。给出的样例是n=3, m=4,答案为1。博客内容包括问题描述、输入输出格式、数据规模和约定,还讨论了朴素算法的时间复杂度为O(n*m),并提示可以对式子进行代数变形以优化解题思路。" 124104572,5540113,GD32F103C8T6定时器实战:3路互补PWM输出配置指南,"['嵌入式开发', 'MCU', '定时器应用', 'PWM输出', '互补输出']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.lydsy.com/JudgeOnline/problem.php?id=2956


 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。


Input

第一行两个数n,m。


Output

  一个整数表示答案mod 19940417的值


Sample Input

3 4


Sample Output

1


样例说明

  答案为(3 mod 1)(4 mod 2)+(3 mod 1) (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4) = 1


数据规模和约定

  对于100%的数据n,m<=10^9。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

真·skysys

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值