如何使用DBSCAN进行聚类

本文通过使用Python的sklearn库中的DBSCAN算法对一组数据进行聚类分析,详细介绍了DBSCAN算法的工作原理,包括近邻距离eps和每类最少样本数min_samples的设置,并展示了如何构造数据集、应用聚类算法及输出聚类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.cluster import DBSCAN
import numpy as np

X = np.array([[1, 2], [2, 2], [2, 3], [8, 7], [8, 8], [25, 80]])

clustering = DBSCAN(eps=0.3, min_samples=2).fit(X)

print(clustering.labels_)

import就不解释了
第三行构造数据
第四行进行聚类,eps是近邻距离,不是边界距离,min表示每类最少数量
最后一行输出lable

结果如下
array([ 0, 0, 0, 1, 1, -1])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值