Pandas数据分析练习1

这篇博客介绍了使用Pandas对Chipotle快餐数据进行初步探索的过程,包括数据导入、数据框操作、列信息查看、商品下单数量统计、总收入计算、订单数量、平均订单金额等关键分析步骤。

练习1-开始了解你的数据

探索Chipotle快餐数据


目录

步骤1 导入必要的库

步骤2 从如下地址导入数据集

步骤3 将数据集存入一个名为chipo的数据框内

步骤4 查看前10行内容

步骤5 数据集中有多少个列(columns)

步骤6 打印出全部的列名称

步骤7 数据集的索引是怎样的

步骤8 被下单数最多商品(item)是什么?

步骤9 在item_name这一列中,一共有多少种商品被下单?

步骤10 在choice_description中,下单次数最多的商品是什么?

步骤11 一共有多少商品被下单?

步骤12 将item_price转换为浮点数

步骤13 在该数据集对应的时期内,收入(revenue)是多少

步骤14 在该数据集对应的时期内,一共有多少订单?

步骤15 每一单(order)对应的平均总价是多少?

步骤16 一共有多少种不同的商品被售出?

代码截图


步骤1 导入必要的库

# 运行以下代码

import pandas as pd

步骤2 从如下地址导入数据集

# 运行以下代码

path1 = "D:/hailong/hailong_download/pandas_exercise/exercise_data/chipotle.tsv"  # 本地对应的chipotle.tsv路径

步骤3 将数据集存入一个名为chipo的数据框内

# 运行以下代码

chipo = pd.read_csv(path1, sep = '\t')

步骤4 查看前10行内容

# 运行以下代码

chipo.head(10)

输出结果:

步骤5 数据集中有多少个列(columns)

# 运行以下代码

chipo.shape[1]

输出结果:5

步骤6 打印出全部的列名称

# 运行以下代码

chipo.columns

输出结果:

Index(['order_id', 'quantity', 'item_name', 'choice_description', 'item_price'], dtype='object')

步骤7 数据集的索引是怎样的

# 运行以下代码

chipo.index
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值