LeetCode|Python|400题分类刷题记录——递归

这篇博客详细介绍了使用Python通过递归方式解决LeetCode上的400道题目,涉及递归、DFS、BFS等多种算法,包括n皇后问题、岛屿数量、墙与门等经典问题的解决方案,以及详细思路和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

递归/DFS/BFS

在不断更新中...

51. N 皇后

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例 1:


输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:

输入:n = 1
输出:[["Q"]]
 

提示:

1 <= n <= 9
皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/n-queens
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

方法一:暴力搜索

这道题可以转换为求1~n这n个数的全排列的问题。暴力搜索列出1~n这n个数的所有排列,再判断排列是否满足n皇后的规则(不同行、不同列、不同对角线) 

class Solution:
    def generate_permutation(self, index):
        if index == self.n:
            flag = 1
            for i in range(self.n):
                for j in range(i + 1, self.n):
                    if abs(i - j) == abs(self.p_current[i] - self.p_current[j]):  # 判断两个皇后是否位于同一对角线上
                        flag = 0
                        break
            if flag:
                # print(p_current)
                self.permutation_list.append(self.p_current.copy())
                self.count += 1
            return

        for i in range(self.n):
            if self.num_exist[i] == 0:
                # print(i + 1)
                self.p_current[index] = i + 1
                self.num_exist[i] = 1
                self.generate_permutation(index + 1)
                self.num_exist[i] = 0

    def solveNQueens(self, n):
        """
        :type n: int
        :rtype: List[List[str]]
        """
        self.n = n
        self.num_exist = [0] * n  # 记录某个数字是否已经存在在当前排列中

        self.permutation_list = []  # 所有排列
        self.p_current = [0] * n  # 当前的排列

        self.count = 0  # 合法的方案数

        self.generate_permutation(0)  # 生成符合n皇后规则的排列

        result = []
        k = 0
        for each in self.permutation_list:
            # print(each)
            r = []
            for i in range(n):
                pp = ['.'] * n
                pp[each[i] - 1] = 'Q'
                r.append(''.join(pp))
                k += 1
            result.append(r)
        return result

 方法二:回溯法

同样是求1~n这n个数的排列,但是比起方法一是先求完了所有排列在一个个判断是否符合n皇后规则,我们可以发现,当放置了一部分皇后时,可能剩余的皇后无论怎么放都不会合法,此时没必要往下递归了,直接返回上一层,可以减少计算量,这就是回溯法。

class Solution:
    def generate_permutation(self, index):
        if index == self.n:
            self.permutation_list.append(self.p_current.copy())
            return

        for i in range(self.n):
            if self.num_exist[i] == 0:
                flag = 1
                for pre in range(0, index):
                    if abs(index - pre) == abs(i - self.p_current[pre] + 1):
                        flag = 0
                        break
                if flag:
                    self.p_current[index] = i + 1
                    self.num_exist[i] = 1
                    self.generate_permutation(index + 1)
                    self.num_exist[i] = 0

    def solveNQueens(self, n):
        """
        :type n: int
        :rtype: List[List[str]]
        """
        self.n = n
        self.num_exist = [0] * n  # 记录某个数字是否已经存在在当前排列中

        self.permutation_list = []  # 所有排列
        self.p_current = [0] * n  # 当前的排列

        self.count = 0  # 合法的方案数

        self.generate_permutation(0)  # 生成符合n皇后规则的排列

        result = []
        k = 0
        for each in self.permutation_list:
            r = []
            for i in range(n):
                pp = ['.'] * n
                pp[each[i] - 1] = 'Q'
                r.append(''.join(pp))
                k += 1
            result.append(r)
        return result

 52. N皇后 II

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。

示例 1:


输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:

输入:n = 1
输出:1
 

提示:

1 <= n <= 9
皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/n-queens-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 

思路:求n皇后的排列的方法请看前一题,前一题可以得到n皇后的所有排列,这一题就是统计一下排列个数就可以了。 

class Solution:
    def generate_permutation(self, index):
        if index == self.n:
            # self.permutation_list.append(self.p_current.copy())
            self.count += 1
            return

        for i in range(self.n):
            if self.num_exist[i] == 0:
                flag = 1
           
### LeetCodePython 的解思路及代码示例 #### 使用 Python 标准库的重要性 在解决 LeetCode时,熟悉 Python 标准库能够显著提高效率并简化代码逻辑。Python 提供了许多强大的内置模块和函数,这些工具可以帮助开发者快速处理复杂的数据结构和算法问[^1]。 以下是几个常见的 LeetCode 目及其对应的 Python 解法: --- #### 示例一:有效括号 (LeetCode 20) 此问是经典的栈操作案例。给定一个只包含 `'('` 和 `')'` 的字符串,判断该字符串中的括号是否合法。可以通过模拟栈的操作来验证每一对括号的匹配情况。 ```python def isValid(s: str) -> bool: stack = [] mapping = {")": "(", "}": "{", "]": "["} for char in s: if char in mapping.values(): stack.append(char) elif char in mapping.keys(): if not stack or stack.pop() != mapping[char]: return False return not stack ``` 上述代码利用了字典存储括号之间的映射关系,并通过列表作为栈的基础数据结构完成匹配过程[^2]。 --- #### 示例二:链表反转部分节点 (LeetCode 92 或 类似于引用中的第 4 条) 对于链表类目,通常涉及指针操作以及边界条件的严格控制。以下是一个简单的例子——局部翻转链表的部分节点。 输入样例: - 输入:`head = [1,2,3,4,5], k = 3` - 输出:`[3,2,1,4,5]` 解决方案如下所示: ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def reverseKGroup(head: ListNode, k: int) -> ListNode: dummy = jump = ListNode(0) dummy.next = l = r = head while True: count = 0 while r and count < k: # 判断是否有k个节点待反转 r = r.next count += 1 if count == k: # 如果满足,则执行反转 pre, cur = None, l for _ in range(k): # 反转l到r之前的k个节点 temp = cur.next cur.next = pre pre = cur cur = temp jump.next = pre # 连接已反转部分与剩余未反转部分 jump = l # 移动jump至当前组最后一个节点位置(l现在指向原组最后一位) l = r # 更新下一次循环起点为下一组的第一个节点(r此时位于下一组第一个节点处或者None) else: # 不足k个则无需继续反转 break jump.next = l # 将最后一段不足k个的节点连接起来 return dummy.next # 返回新头结点dummy.next ``` 这段代码实现了对指定长度子序列的逆序排列功能[^4]。 --- #### 示例三:二叉树遍历系列 (LeetCode 144/94/145) 针对二叉树的不同遍历方式(前序、中序、后序),可以采用递归方法轻松实现。下面分别展示这三种基本形式的具体实现方案。 ##### 前序遍历 (Preorder Traversal) ```python def preorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return result.append(node.val) # 访问根节点 dfs(node.left) # 左子树递归访问 dfs(node.right) # 右子树递归访问 dfs(root) return result ``` ##### 中序遍历 (Inorder Traversal) ```python def inorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return dfs(node.left) # 左子树递归访问 result.append(node.val) # 访问根节点 dfs(node.right) # 右子树递归访问 dfs(root) return result ``` ##### 后序遍历 (Postorder Traversal) ```python def postorderTraversal(root: TreeNode) -> list[int]: result = [] def dfs(node): if node is None: return dfs(node.left) # 左子树递归访问 dfs(node.right) # 右子树递归访问 result.append(node.val) # 访问根节点 dfs(root) return result ``` 以上三个版本均基于深度优先搜索策略构建而成,区别仅在于何时记录当前节点值的时间点不同而已[^3]。 --- ### 总结 通过对典型 LeetCode 目的解析可以看出,在日常过程中注重积累常用技巧非常重要;比如善用堆栈解决配对问、灵活运用链表双指针技术优化空间性能指标等等。同时也要不断巩固基础理论知识体系,这样才能更好地应对各种复杂的场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值