LRAE: Large-Region-Aware Safe and Fast Autonomous Exploration of Ground Robots for Uneven Terrains

摘要

地面机器人在非平整地形的自主探索仍具有挑战性,因为崎岖的地形结构不仅会降低探索性能,还会威胁机器人的导航安全。在本文中,我们提出了一种新的探索规划器 exploration planner,用于在非平整地形中进行安全且快速的探索。为了获得较高的探索效率,我们提出了一种大区域感知的探索路线优化策略,该策略在优先探索大区域的同时,也会考虑探索附近的小区域。为了安全且全面地探索非平整地形,我们的规划器充分引入了可通行性信息,以提取未知区域并评估探索安全等级。这些安全等级随后被整合到探索策略的设计中,以确保机器人探索的安全性。我们在各种具有挑战性的仿真场景和真实世界的野外非平整地形中对我们的方法进行了验证。结果表明,与最先进的方法相比,我们的方法能够安全地探索非平整地形,并将探索效率提高高达 45.3%。

一、引言

地面机器人自主探索方法因其广泛的应用领域(如伤员救援 [1]、目标搜索 [2] 和资源勘探 [3])而受到越来越多的关注。现有的地面机器人探索方法研究主要集中在结构化和平坦环境。关于地面机器人在崎岖不平地形环境中的探索研究较少。然而,非平整地形中的自主探索对于实际应用具有重要意义,例如行星探测 [4] 和隧道检查 [5],在这些应用中,机器人的工作环境通常地面崎岖

对于非平整地形,探索方法不仅需要考虑效率,还需要考虑机器人的导航安全。为了应对非平整地形,一些先前的方法引入了地形分析模块 [6]、[7]、[8]、[9]、[10]。然而,这些模块中的大多数对于连续起伏的地形来说不够稳健和准确。它们容易将起伏地形误识别为不可通行区域,从而导致在起伏地形附近可能可探索的未知区域(边界)提取不完整 [6]、[7]。此外,现有方法仅在路径规划中利用可通行性信息来避开不可通行区域,而在探索策略的设计中(如选择探索目标或规划探索路线)并未充分考虑可通行性信息。最后但同样重要的是,一些方法存在探索效率低的问题,因为机器人可能会往返探索或重复探索同一区域 [11]、[12]。

基于上述现有方法存在的问题,本文提出了一种用于非平整地形的大区域感知探索方法(LRAE)。该方法在优先探索大区域和兼顾探索附近小区域之间取得平衡,以提高探索效率;并且利用可通行性信息提取未知区域、评估探索安全等级并优化探索路线,以提高安全性。该方法在仿真和真实世界实验中进行了测试。结果表明,与最先进的方法相比,LRAE 能够将探索效率提高高达 45.3%,并将行进消耗降低高达 38.8%,并且能够探索具有崎岖不平地形的野外环境。图 1 展示了一个地面机器人使用所提出的方法自主探索非平整地形的实例。完整视频链接:https://youtu.be/xePDPZluLes

综上所述,本研究的贡献如下:
1)提出了一种安全且快速的探索规划器,该规划器将可通行性信息充分引入探索策略的设计中,以确保探索安全。该规划器的优势在于,它能够针对连续起伏地形完整提取潜在可探索的未知区域,并基于可通行性地图准确评估探索安全等级
2)提出了一种大区域感知的探索路线优化策略,该策略使机器人能够优先探索大的未知区域,同时也考虑探索附近的小区域。该策略实现了较高的探索效率,并防止机器人在距离较远的区域之间往返探索。
3)进行了大量的对比实验、消融研究和真实世界实验,以证明我们方法的优越性能,并验证在探索非平整地形时,在可通行性地图而非原始点云地图上提取未探索区域的必要性。

二、相关工作

一般来说,地面机器人在非平整地形的自主探索主要涉及两个紧密相关的研究领域:1)地形可通行性分析;2)探索路径规划。

现有的地形可通行性分析方法考虑了高度差、地形坡度和粗糙度等关键因素。Maffei 等人 [8] 在传统的高程图上计算高度的局部变化,以识别障碍物和坡度。文献 [6]、[7] 的研究利用点云构建高程图,然后通过高度的局部分布对地面和障碍物进行分类。与上述方法不同,文献 [9] 的研究认为,与高程图相比,三维网格在复杂环境中进行规划具有更多优势,并且它依靠基于 OctoMap [13] 生成的网格来计算坡度。为了确保行驶安全,Tang 等人 [14] 提出了一种不仅考虑地形条件,还考虑机器人与地面之间交互关系的方法。文献 [15] 提出了一种学习到的机器人 - 地形交互模型。在文献 [15] 提出的模型的辅助下,文献 [16] 生成了可行的探索轨迹。为了处理任意崎岖地形,Jian 等人 [17] 提出了一种同时考虑地形坡度和粗糙度的三维路径规划方法。受该方法的启发,我们设计了一个地形可通行性映射模块,以获得在探索策略中充分利用的可通行性地图。

主流的探索方法主要分为基于边界的方法和基于采样的方法。边界是指已知自由区域和未知区域之间的边界,由 Yamauchi [18] 首次引入以指导机器人探索。随后,出现了许多改进基于边界方法的研究。文献 [19] 的研究提出了一种用于三维探索的多分辨率基于边界的规划器,该规划器在 OctoMap 上以不同的分辨率检测和过滤边界点,以减少边界点的数量。为了加快边界的建立,文献 [20] 的研究利用 OctoMap 中边界体素的隐式分组来替代计算成本高昂的边界聚类算法。上述方法的探索策略都是贪婪的,即最大化效用函数或最小化成本函数。另一类探索方法是基于采样的方法,该方法随机采样视点来指导探索。Bircher 等人 [12] 开发了一种下一最佳视点规划器(NBVP),该规划器扩展快速探索随机树(RRT)以生成作为视点的节点。然后,机器人沿着具有最大信息增益的分支的第一条边移动。文献 [21] 的研究提出了一种基于图的探索规划器(GBPlanner),该规划器包含一个局部探索规划器和一个全局重定位规划器。为了获得更高质量的视点,Yu 等人 [22] 提出了一种启发式视点确定方法,该方法采用高斯采样器对初始视点进行采样。然后通过评估函数和优化策略对这些视点进行评估和改进。Zhou 等人 [23] 认为贪婪策略不能保证全局最优性,并且会导致效率低下。因此,他们在已探索的环境信息的背景下求解最优的全局探索路线。

目前,地面机器人三维探索的两种最先进的方法是 TARE [7] 和 FAEL [6]。TARE 将探索路线规划形式化为扩展的旅行商问题,并找到经过视点的最短探索路线。由于 TARE 没有考虑信息增益,机器人可能会遇到往返探索信息增益低的区域的问题。FAEL 的研究提出了一种基于最大化探索增益的探索路径优化方法。最大化探索增益使得机器人倾向于先探索信息增益较高的区域。然而,这种方法导致机器人在初期容易忽略信息增益较低的区域,然后花费更多时间返回去探索。为了解决这些问题,我们提出了一种新的探索路线优化策略,该策略在优先探索大的未知区域和兼顾探索附近小的未知区域之间取得平衡。

三、方法

A. 框架概述

本文提出的自主探索框架如图 2 所示。

图2. 所提出的框架由地形可通行性映射、探索规划器以及现有的运动规划和SLAM(同步定位与地图构建)方法组成。探索规划器的核心包括:1)大区域感知的探索路线优化策略;2)基于可通行性地图的探索安全等级评估。橙色虚线箭头表示不合理的探索路线,其他标签的解释如图4所示。

首先,地形可通行性映射模块基于同时定位与地图构建(SLAM)的数据构建全局可通行性地图。之后,探索规划器在全局可通行性地图上运行,实现未知区域的提取和探索安全等级的评估。此外,规划器利用所提出的优化策略规划探索路线,使机器人倾向于先探索大区域,同时考虑周围的小区域。最后,基于该路线规划探索路径,并将其发送到探索路径执行模块。上述过程反复执行,直到没有未知区域为止。

B. 稳健的地形可通行性映射

现有的方法如 FAEL [6] 和 TARE [7] 在准确且完整地提取非平整地形(如起伏斜坡)附近的边界方面面临挑战。为了解决这个问题,我们精心设计了一个具有高精度和稳健性的地形可通行性映射模块,以生成用于提取未知区域的可通行性地图。

1)可通行性分析:首先,基于点云地图,在机器人附近获取以机器人位置为中心的三维网格地图 。然后基于 的大小和位置初始化局部网格地图 ,并且 中每个单元格的状态初始化为未知。其次,如图 3 所示, 中的每个单元格对应一个中心点。我们利用文献 [17] 中的方法计算与该中心点对应的地形表面上的空间点,并从 G 中选择空间点 来拟合平面 T。

获得 T 后,通过以下公式计算该平面的可通行性 τ:

其中, 表示拟合平面与水平面之间的夹角。 表征地形粗糙度,通过所有空间点 Np 到 T 的高度值的标准差计算。此外,μ 是权重,st 和 rt 分别表示机器人可通行的最大坡度阈值和最大粗糙度阈值。

接下来,利用\tau更新 Ml 中每个单元格的状态。当\tau等于 1 时,单元格的状态标记为不可通行。当\tau属于区间 [0,1) 时,状态指定为可通行,并且该值设置为\tau

2)全局可通行性地图维护:为了提高计算效率,可通行性分析被限制在机器人的紧邻区域,从而生成局部可通行性地图 Ml。然而,需要全局可通行性地图 来记录已探索区域、提取未知区域和规划路径。

的原点坐标、分辨率和大小是固定的。Mg 中每个单元格的值初始化为 1。通过坐标变换矩阵将 Ml 的所有单元格和 Mg 的所有单元格进行映射。令 表示 t 时刻 Ml 中第 i 个单元格的值, 表示 t 时刻 Mg 中与 Ml 中第 i 个单元格对应的第 j 个单元格的值。则 的值通过以下公式更新:

公式(2)的灵感来自于文献 [24] 中体素符号距离的更新方法,该方法对计算误差具有更强的稳健性。注意,\alpha 是一个大于 0.5 且小于 1 的权重。原因是在本研究中,我们认为在特定区域内,时间越长,点云的积累量相应增加,这更有利于地形可通行性分析。

C. 可通行性增强的探索规划器

探索规划器利用生成的全局可通行性地图,依次提取未知区域、评估探索安全等级、优化探索路线并规划探索路径。

1)提取未知区域:与现有方法不同,文献 [25] 的研究旨在提取未知区域而非边界,该研究声称使用未知区域比使用边界能够更准确地评估信息增益。受文献 [25] 的启发,我们采用未知区域来指导机器人探索。在全局可通行性地图上提取和评估未知区域的过程总结在算法 1 中。

以下是详细介绍。

如图 4 所示,首先,函数  计算以机器人为中心的最大正方形 s,该正方形仅包含已探索区域(第 1 行)。其次,函数  基于 s 的四条边将提取窗口 ε 划分为九个区域 (第 2 行),其中 ε 是一个随机器人移动的二维固定大小窗口。为了加快计算速度,与 s 重合的子区域在后续过程中将不再被考虑。其余八个子区域被添加到集合 中(第 3 行)。然后,函数 pop_back () 从 H 中依次取出 hi 并将 hi 从 H 中删除(第 5 行)。函数  计算第 i 个子区域 hi 中未知网格的质心位置 和信息增益 g_i(第 6 行),其中 gi 是 hi 中包含的未知网格的面积。用 表示 hi 中的未知区域。

随后,如果 li 所在网格的状态是已知的,并且 hi 的每条边的长度 大于 Mg 的分辨率,则将 hi 均匀划分为四个更小的子区域 ,并将 添加到 H 中(第 7-11 行)。否则,如果 gi 大于常数 β,则通过函数r_i进行评估,并将评估后的r_i添加到未知区域集合中(第 12-13 行)。重复上述步骤,直到为空集。最后,返回

注意,如果为空集,我们将提取窗口的大小扩展到全局可通行性地图的大小,然后在新窗口中提取未知区域,以确保不会遗漏任何未知区域。

2)评估探索安全等级:函数 (第 13 行)旨在通过在未知区域中寻找前瞻视点来评估每个未知区域的探索安全等级。如图 4 中的绿色三角形所示,前瞻视点是指位于可通行区域和未知区域之间且不与不可通行网格相邻的点。如图 4 所示,蓝点所在的未知区域是高安全未知区域。这类区域至少有一个前瞻视点,并且连接质心和前瞻视点的直线不经过不可通行网格。紫点所在的区域是中安全未知区域,因为连接质心和前瞻视点的直线经过不可通行网格。黑点所在的没有前瞻视点的区域是低安全未知区域。

探索安全等级在后续的探索路线优化中被采用。注意,通过评估探索安全等级,可通行性因素被成功引入探索过程,这有助于机器人更安全地完成任务。

3)大区域感知的探索路线优化:高安全和中安全的未知区域用于探索路线优化。换句话说,我们暂时不考虑探索低安全的未知区域。为了规划合理的未知区域探索路线,提出了一种大区域感知的优化策略。该策略旨在使机器人能够优先探索大区域,同时也考虑探索附近的小区域。它能够保持较高的探索速率,并防止机器人在初期忽略小区域,从而避免后期在距离较远的小区域之间进行不必要的往返探索。

受文献 [21] 中探索增益的启发,我们设计了公式(3)来指导机器人优先探索大区域。令(表示所有未知区域的路线。使机器人倾向于探索大区域的探索路线(相关参数)通过以下公式规划:

其中,当未知区域是高安全区域时,w_k 等于 1;当是中安全区域时,w_k等于一个小于 1 的常数。w_k使探索更安全,因为当面对两个信息增益和距离成本相似的未知区域(一个是高安全区域,另一个是中安全区域)时,它允许机器人先探索高安全区域。g_k表示r_k的信息增益。表示沿着当前路线 从 r0 到 rk 的累积移动距离,其中 r_0 是机器人的当前位置。

r1 和 rk 分别表示沿着 rc 要探索的第一个和最后一个未知区域。r_ir_{i+1} 表示沿着 rc 连续探索的两个未知区域。 表示从r_ir_{i+1} 的路径长度。 是文献 [6] 中提出的运动一致性成本,引入该成本是为了减少机器人剧烈改变探索方向的情况。

作为 gk 的惩罚函数。具体来说,对于一个未知区域,机器人探索该区域花费的路径成本越少,探索增益就越大。在未知区域指导策略和目标函数的共同作用下,机器人更倾向于优先探索更大的未知区域。

由公式(3)求解的路线可以使机器人倾向于先探索大区域,但仅使用该路线指导探索容易导致 FAEL [6] 存在的问题,即机器人在初期遗漏小区域,之后花费更多时间返回去探索。为了避免这个问题,我们引入了最小化探索所有未知区域的路线的累积移动距离。因此,通过以下公式求解路线

其中,ri 表示所有未知区域可以形成的 N 条可能探索路线中的第 i 条探索路线。L 在公式(5)中的作用与其在公式(3)中作为 gk 的惩罚函数的作用不同。在公式(5)中,最小化 L 是为了指导机器人在探索大区域的同时考虑附近的小区域,因为 L 不涉及信息增益。

然而,公式(3)和(5)所代表的两个优化目标是相互关联的。受多目标优化问题的启发,我们提出了一种新的优化策略,该策略在两个优化目标之间进行权衡,通过以下公式求解最优探索路线

其中,Gi 和 Li 分别表示遵循可能的探索路线 ri 时公式(3)和(5)的具体值。Gmax 和 Lmin 分别表示所有可能探索路线中公式(3)的最大值和公式(5)的最小值。表达式(Gmax - Gi)和(Li - Lmin)表示与预期目标的误差。

注意,公式(3)和(5)可以通过 2-Opt 算法求解。为了加快优化速度,在使用 2-Opt 求解 Gmax 和 Lmin 的同时,我们记录求解过程,即所有 Gi 和 Li。然后直接使用 Gi 和 Li 求解公式(6)。

4)高效且安全的探索路径规划:如图 4 所示,基于优化后的探索路线规划探索路径。现有方法 [7] 规划的探索路径经过探索路线上的所有视点。与现有方法不同,我们只规划从机器人到路线上第一个未知区域的路径。原因是由于已探索区域在不断更新,需要不断重新规划路线以确保其全局最优性。在这种情况下,对于一条经过所有未知区域的路径,机器人在路径更新之前没有时间完成执行。因此,规划这样的路径是不必要且低效的

需要注意的是,我们在规划探索路径时引入了探索安全等级以确保安全。如果路线上的第一个未知区域是高安全区域,我们直接规划到质心的路径,如图 4 所示。如果第一个未知区域是中安全区域,我们只规划到离机器人最近的前瞻视点的路径。最后,将探索路径发送到路径执行模块,以驱动机器人执行探索任务。

四、仿真与实验

我们进行了对比实验、消融研究和真实世界实验,以验证所提出框架的可行性和效率。为了验证所提出方法的先进性,将其与两种最先进的三维探索方法(FAEL [6] 和 TARE [7])进行了比较。所有基准方法都利用地形可通行性分析模块,声称能够探索三维环境。为了确保对比实验的公平性,这三种方法采用统一的局部规划器和路径跟踪器。

A. 仿真

所有仿真均在配备 Intel Core i7-11800H CPU 和 16GB RAM 的笔记本电脑上执行。采用配备 Velodyne HDL-32 的四轮差速驱动机器人 Scout 2.0 作为测试平台。机器人的最大线速度设置为 1.0 m/s。SLAM 模块使用的算法是 A-LOAM [26]。局部可通行性地图的大小设置为 20 m×20 m。我们的方法和对比方法在相同场景中从相同的起始位置执行,每种方法运行五次。每次运行的终止标准定义为已探索的可通行区域面积达到总可通行区域面积的 95%。我们记录每次运行的探索时间消耗、机器人行驶的路径成本以及已探索的可通行区域面积。最后,在表 I 中呈现五次运行的平均结果。

1)对比实验:所有对比实验在四种不同的仿真环境中进行,如图 5 所示。

场景 1 和场景 2 是具有起伏地形和障碍物的复杂野外环境。最初,我们计划仅在非平整地形环境中进行对比实验。然而,FAEL 和 TARE 在这样的场景中未能成功探索。因此,在图 5(c)、(d)所示的平坦环境中进行了额外的实验。场景 3 具有狭长的走廊和大规模空间,而场景 4 包含众多分叉口。

当 FAEL 和 TARE 在场景 1 和场景 2 中探索时,机器人未能提取非平整地形附近的边界,导致探索失败,如表 I 所示。FAEL 和 TARE 失败的原因是它们从点云地图或 UFOMap [27] 中提取自由区域和未知区域之间的边界然而,这些对比方法将可通行的起伏地形识别为占用区域(不可通行区域)。这导致无法完整提取起伏地形附近的边界。对于所提出的方法,通过应用设计的地形可通行性映射模块,它能够准确识别可通行区域和不可通行区域,并在可通行性地图上完整提取未知区域。如图 6 所示,所提出的方法能够安全且完整地探索具有非平整地形的场景,并构建它们的点云地图和可通行性地图。同时,对比结果表明,在探索非平整地形时,在可通行性地图上提取未知区域或边界是必要的。

图6. 由所提方法构建的点云地图和可通行性地图。图中展示了进行消融实验时机器人的行驶轨迹。OURS_F和OURS_T均为消融实验相关方案。白色箭头表明,OURS_F会导致机器人在相距较远的未知区域之间往返探索。橙色矩形显示机器人来回折返以探索小区域。红色虚线多边形显示,OURS_T会导致机器人在初始阶段花费大量时间探索墙壁附近或狭窄走廊处的小区域。

为了进一步验证所提出方法的效率,我们在对比方法能够成功探索的场景 3 和场景 4 中比较了所有方法的性能。表 I 表明,所提出的方法显著优于对比方法,以更短的探索时间和更低的路径成本完成了探索。ηt 和 ηc 分别表示所提出的方法在探索时间和路径成本方面相对于对比方法的效率提升。此外,我们绘制了已探索的可通行区域面积随时间的增长曲线。图 7 中的曲线表明,我们的方法具有更高的探索速率。

图7. 场景3和场景4中对比实验的结果。五次测试中已探索可通行区域的平均面积随时间变化的情况。我们的方法始终能保持较高的探索速率。

所提出的方法比对比方法性能更好的原因之一是,我们采用未知区域而非边界来指导探索。如文献 [25] 中所讨论的,与边界相比,未知区域提供了更准确的信息增益估计,这有利于指导机器人优先探索大的未知区域。此外,由于 FAEL 追求最大化探索增益,这导致两个明显的问题:1)机器人容易改变其探索方向以朝向信息增益更高的视点移动;2)机器人在初期忽略信息增益较低的视点,随后花费更多时间返回去探索。对于 TARE,它在探索过程中没有考虑信息增益,容易规划经过冗余视点的探索路径。这导致机器人花费大量时间在信息增益低的视点之间往返探索。然而,所提出的大区域感知优化策略规划了更合理的探索路线,该路线同时考虑探索大的未知区域和附近小的未知区域。因此,我们的方法避免了对比方法遇到的问题,并实现了更高的探索效率。

2)消融研究:为了证明我们的探索路线优化策略在非平整地形中的高效性,在场景 1 和场景 2 中进行了消融研究。具体来说,我们将我们方法的优化策略分别修改为 FAEL 或 TARE 的策略,即表 I 中所示的 OURS_F 或 OURS_T。然后,在具有非平整地形的场景中测试我们的方法、OURS_F 和 OURS_T。

表 I 中的消融研究结果表明,与 FAEL 和 TARE 的优化策略相比,所提出的大区域感知优化策略能够显著提高探索效率。

图 8(a)显示,在探索具有大规模空间和狭长走廊的场景 1 时,OURS_F 的探索速率在约 50 s 时略高于我们的方法。而在约 100 s 时,OURS_F 的探索速率低于我们的方法。原因是 OURS_F 采用 FAEL 的探索路线优化策略,该策略最大化探索增益。机器人倾向于先探索大区域,而忽略小区域。随后,机器人花费更多时间在距离较远的小区域之间往返探索。类似地,图 8(b)显示,OUR_F 在探索场景 2 时也遇到了往返探索的问题。大约 180 s 后,OURS_F 的探索速率低于 OURS,因为机器人开始往返移动进行探索。此外,图 8(a)和(b)显示,OURS_T 的探索速率低于其他两种方法。原因是 OURS_T 采用 TARE 的探索策略,该策略不考虑信息增益。这种策略容易导致机器人在初期花费大量时间探索小区域,导致已探索面积增长缓慢,即探索速率低

图8. 场景1和场景2中消融实验的结果。五次测试中已探索可通行区域的平均面积随时间变化的情况。

上述现象可以通过图 6 中所示的机器人轨迹来说明。图 6 中 OURS_F 轨迹上的白色箭头显示机器人在距离较远的未知区域之间往返探索。此外,机器人在初期容易探索广阔的空间。与 OURS_F 不同,OURS_T 的轨迹显示,机器人在初期花费大量时间在墙壁和狭长走廊附近移动,如图 6 中的红色虚线多边形所示。然而,所提出方法的轨迹很少有重叠或往返问题。我们的方法在优先探索大区域和优先探索附近小区域之间取得了良好的平衡,从而避免了 OURS_F 和 OURS_T 存在的问题。

B. 真实世界实验

采用配备 Livox MID360 激光雷达的 Scout 2.0 机器人探索真实的未知环境。实验中使用的 SLAM 算法是 FAST-LIO [28]。考虑到安全性,机器人的最大线速度设置为 0.5 m/s。局部可通行性地图的大小设置为 20 m×20 m。所提出的方法在配备 Intel Core i7-1165G7 CPU 和 32GB RAM 的 NUC 上运行。该复杂环境包含连续起伏的斜坡和杂乱的障碍物,如图 9 所示。我们采用一个 45×25 m² 的矩形来限制要探索的区域。

机器人在 487 s 内完成了探索任务,其中已探索的可通行区域面积为 954 m²。构建的点云地图如图 10 所示,其中白色曲线是机器人行驶的轨迹。该轨迹表明,机器人没有遇到长距离往返探索和重复探索的问题。此外,红色箭头指示机器人在探索大的未知区域之前,先探索了其后方附近的一个小区域。实验结果证明了所提出方法的可行性,该方法能够高效探索具有非平整地形的复杂环境。

五、结论

在本文中,我们提出了一种新的用于地面机器人探索非平整地形的自主探索方法。该方法通过利用可通行性地图完整提取未知区域并评估其探索安全等级。随后,将安全等级因素纳入探索策略,以实现更安全的探索。此外,设计了一种大区域感知的探索路线优化策略,该策略在优先探索大的未知区域的同时,也考虑探索附近的小区域,以获得更合理的探索路线。我们进行了大量的对比实验、消融研究和真实世界实验,以证实我们的方法能够准确识别起伏斜坡附近的潜在可探索未知区域,并安全地探索非平整地形,与对比方法相比,减少了探索时间和路径成本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值